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Abstract— Regulatory sequence detection is a fundamental
challenge in computational biology. One key process in protein
synthesis starts with the binding of the transcription factor to
its binding site. Different sites can show binding to the same
factor. This variability found in binding sequences increases the
difficulty of their detection using computational algorithms. In
this manuscript, a method for the detection of binding sites is
proposed, based on the correlation between binding sequence
positions through information theoretical measures. Efficiency
values of the method are reported in the form of Receiver
Operating Characteristic curves on the detection of different
transcription factors of the Saccharomyces cerevisiae organism.
We compare our results with other known motif detection Motif
Discovery scan (MDscan).

I. INTRODUCTION

Each cell in an organism contains the information for the
synthesis of any machinery for biological processes. For
its survival, it is necessary a very strict control of gene
expression networks in space (cell proliferation, and tissue
differentiation) and in time (response to stimuli) [1]. During
gene transcription the genetic information is initially trans-
ferred from deoxyribonucleic acid (DNA) onto messenger
ribonucleic acid (mRNA). The primary mode of transcription
control is by the association of specific proteins with their tar-
get binding sites in DNA [2]. In addition, they also bind other
modulation factors and the RNA polymerase enzyme. These
proteins, that are located within gene regulatory regions, are
known as transcription factors. In eukaryote organisms, the
transcription begins by means of RNA polymerase recruit-
ment by different proteins that recognize specific signals in
the region previous to the gene called promoter. One of them
is a nucleotide sequence which has the signal to start the
transcription. Once the mRNA has been synthesized, it is
translated into an aminoacid sequence. This process is known
as translation. These polypeptides, after post-translational
changes form structural proteins and enzymes that control
the metabolic processes in cells. A given transcription factor
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shows the ability to bind to different sites with different
sequences along the genome. Due to this intrinsic variability
it is difficult to establish a consensus sequence for the
detection of binding sites [3]. Consequently, any detection
method of binding sites within DNA sequences must con-
sider the variability of these ones. This has originated several
efforts of research, employing different methods to detect
patterns in DNA sequences. One of the most relevant are
the probabilistic methods, where the most representative
models are based on Position Weight Matrices (PWM) also
called position-specific weight matrices (PSWM). A PWM
is a matrix of score values where there is one row for
each symbol of the alphabet, and one column for each
position in the pattern. There are several types of PWMs
[4]: frequency matrices contain the absolute frequency of a
nucleotide at each motif position, weight matrices contain
the relative frequency of a nucleotide at a motif position as
an estimation of the probability of this fact, and finally, log-
odds matrices contain at each position the log of the quotient
between the probability of finding particular nucleotide at
such a position in sequences containing the real motif and
the background frequency of the letter at the same position.
One of these methods, Motif Discovery scan software, is
based on the combination of word enumeration and position-
specific weight matrix [5]. Information theoretical measures
have been used in genetics to visualize and characterize the
information of a sequence set [6], [7]. Detectors based on
entropy measurements have also been published, measuring
total information content in the binding site by means of
Shannon and parametric entropies [8]. This previous work
considered that binding site positions are independent to each
other whereas other studies have suggested that mutually
covarying base-amino acid positions may indicate possible
protein-DNA contacts. This covariation can be measured by
checking the correlation of the different positions on the
binding site. In this manuscript we propose a motif detector
applied on transcription factor binding site determination
using a differential measure based on mutual information.
The method starts from an aligned set of sequences with
known binding and analyzes the total cross-information
change when the candidate sequence is included in the set.

II. MATERIALS AND METHODS
A. Method

The proposed method starts with a matrix of aligned se-
quences with binding evidence. Any new candidate sequence
added to the training matrix will cause a variation on the
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TABLE I
SUMMARY OF THE RECOGNIZERS ANALYZED

Organism Recognized  Base  Aligned Sequences
S. cerevisiae MCMI 38 16
S. cerevisiae ABF1 37 22

mutual information of the set of aligned sequences. The
detection of an active site is considered depending on the
actual change on the mutual information matrix of aligned
sequences if the candidate sequence was added to the set
of aligned sequences. For random sequences the correlation
between the site positions will decrease, whereas for a
true binding sequence the overall mutual information of the
aligned sequence set is not expected to be modified. There-
fore, this measurement allows to build a detector based on the
dependence between binding site positions. The validation
of the detector has been done by employing a “Leave one-
out” cross-validation. Each individual sequence is used as a
validation sequence, while the classifier is built on the rest
of n — 1 sequences as training set. The results have been
obtained with randomly generated candidate sequences with
1000 sequence repeats, tested successively for each sequence
within the training matrix.

B. Position Cross-Mutual Information

Mutual Information is a quantity that measures the mutual
dependence of two variables. With two discrete random vari-
ables, X and Y, with N possible states (X7, Xo,---, Xn)
and (Y7,Y5, -, Yn), the mutual information can be defined
as,

1Y) = 35 p(X, Y )logs (pp(%]’;;)) )
:H(X)+H(Y)+H(X,Y) (D

where H(X) and H(Y) are the marginal entropies, and
H(X,Y) is the joint entropy of X and Y. The mutual infor-
mation measure is symmetric and non-negative. [(X;Y) =0
holds if and only if two variables (X, Y') are statistically
independent under no finite sample effects. In DNA signal,
variables X and Y are nucleotides in two different positions.
The probability is estimated by frequency estimation from
the training matrix (set of sequences with known binding).
The Position Cross-Mutual Information (PCMI) measure will
allow the study of the dependence between non adjacent
positions, providing with information about the correlation
of the nucleotides.

C. Database Description

The algorithm requires a group of aligned nucleotide
sequences with binding evidence. These sequences comes
from the organism Saccharomyces cerevisiae which was
the first eukaryotic organism with its completed genome
known [9]. This organism contains around sixteen million
of nucleotides distributed among sixteen chromosomes. We
have considered the recognizers MCM1 and ABFI, summa-
rized in table I. The dataset has been obtained from the

TRANSFAC database, http://www.genregulation.
com/pub/databases.html , using for the extraction of
DNA sequences an own R library for automatic sequence
extraction from a transcription factor name. Finally, these
sequences have been lined up by means of MUSCLE [10],
to obtain the different nucleotides involved in each position.

D. Motif Detection

Using the matrix of aligned sequences we perform a
measurement of the correlation between positions of the
binding sites using mutual information. The values of mutual
information for highly correlation positions are close to H;
(Shannon entropy in the site position 7). On non-correlated
positions the mutual information has values close to the zero.
Using this propriety, the developed algorithm performs the
comparison between the mutual information of the training
matrix and the mutual information of the training matrix
when the candidate sequence is added to the set. We test
these modifications considering a set of functions. These are,

Dif ference = (Z 7) o )

]—1/2

Power = |3~ MInairiay 3)

(Z Mlmatrizryﬁ_l) N (4)
maz(H)

Normalization = [

where , v and [ are
Y= |MImatr1',fc - MImatri:c+seq| 4)
6 = |MImat7'iw + MI7nat7‘i;c+seq| (6)

where, M1, 4tri 1S the mutual information matrix of the
set of aligned sequences. The M1, q¢riz+seq Measurement
determines the correlation between training matrix positions
when the studied sequence is added. We consider the varia-
tion of the information matrix when adding a new sequence
by means of the variation produced in the total cross-site
mutual information. For a random sequence the dependence
between positions decreases, increasing the value of +. On
the other hand, if the sequence added is assumed to be a
binding sequence, ~ value will be equal or lower and (
will be higher than the random case as the binding sequence
does not modify the aligned sequence set information. In
this manner, we can define a detector that allows for the
discrimination between a random sequence and a sequence
that belongs to a binding site. The developed method, based
on the criterion defined previously, is as follows:

1) For each position within the training matrix, we es-
timate the probability and the joint probability corre-
sponding to each nucleotide. We impute the missing
values to a multi-state nucleotide with probabilities
corresponding to the frequency of each nucleotide in
the corresponding organism.

2) Marginal and joint entropies are calculated from the
PWM, correcting finite sample effects [11].
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(left) Mutual Information heatmap between binding site positions for ABF1. Redundancy is plotted on top; (right) Product between mutual

Information matrix weighted by the exterior product of the redundancy profile.

3) Mutual information is computed from marginal and
joint entropies.

4) 1, 2 and 3 points are repeated, considering the training
matrix with the new sequence added.

5) For each mutual information obtained from the studied
sequences, a scalar quantity has to be computed using
different functions defined in (2), (3), (4), (5) and (6).

III. RESULTS

The mutual information between binding site positions and
the variability of each position of the ABF1 transcription
factor is shown in Figure 1 (left), where both, mutual
information matrix and redundancy profile are shown in the
plot. The redundancy measurement is a normalized entropy
that compares the entropy of the variable to its theoretical
maximum value, given as R =1 — H/H 4, [8], [12]. The
measurement of redundancy provides information about the
symbolic variance observed in a position of the set of aligned
sequences. The lower the symbolic variance, the higher the
value of redundancy. In fact, the redundancy gives informa-
tion on how much a particular position has been conserved
on the set of sequences. On the other hand, Figure 1 (right)
shows the product between the mutual information matrix
between positions and the exterior product of redundancy
profile. This measurement helps to determine the correlation
between binding site positions that play an important role in

TABLE 11
AREA UNDER CONVEX SURFACE

MCMI1 ABF1

Difference 0.9916  0.9801
Power 0.9923  0.9650
Normalization  0.9962  0.9848
MDscan 0.9793 0.9754

the binding from a conservation point of view. In some sense,
this graph shows not just the conserved sites among different
binding sites but which correlation between the sites has
been conserved on a number of binding examples. When this
measurement is positive we consider that exists dependence
between site positions. The detector proposed in this paper
evaluates the perturbation into this matrix to check whether
this conserved correlation is destroyed with the addition
of the candidate sequence on the set of sequences. The
performance of the detector in the case of ABF1 and MCM1
is shown as a Receiver Operating Characteristic (ROC) for
different functions in Figures 2 and 3, respectively. The best
learning system will be the one which produces a bigger area
under the convex surface (AUC). The performance of the
MI based detector is compared against a publicly available
detector MDscan [5]. In table II, it can be observed that the
detector has a different behavior depending on the functional
used. Moreover, the area under convex surface (AUC) for the
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Receiver Operating Characteristic curves ABF1
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Fig. 2. ROC curve for the different detectors in ABF1
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Fig. 3. ROC curve for the different detectors in MCM1

mutual information method is larger than MDscan except for
the power functional in ABF1. Therefore, assuming position
dependence through mutual information method helps to
improve over MDscan in these examples. In Figures 2 and 3
it is observed how the number of true positives (TP) and false
positives (FP) depends on the transcription factor binding site
and the functional considered (e.g. given a number of true
positives the number of false positives changes depending on
the functional). The best functional can be selected for the
final application given the cost criterion established for miss
classifications of True Positives and the area under convex
surface maximum.

IV. CONCLUSIONS AND FUTURE WORKS

In this contribution, we have presented a methodology to
detect the transcription factor binding sites (TFBS). This
method is based on the variation of the Position Cross-
Mutual Information from a set of known binding sequences.
The proposed algorithm has been applied on the detection
of ABFI and MCM1 recognizers from a random sequence.
The obtained results improve binding site detection based
on first order Shannon and Rényi total variation as reported.
The mutual information measurement provides additional
information related to the binding process, like the correla-
tion between binding site positions. The proposed method
behaves better than MDscan, which is a combined word
enumeration and position-specific weight matrix in the case
of binding site discrimination against random generated
sequences. Future studies will extend the study of the depen-
dence between the positions in the binding site employing
parametric uncertainty measurements.
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