
  

  

Abstract—We report that combining the interbeat heart rate 
as measured by the RR interval (RR) and R-peak envelope 
(RPE) derived from R-peak of ECG waveform may 
significantly improve the detection of sleep disordered 
breathing (SDB) from single lead ECG recording. The method 
uses textural features extracted from normalized gray-level co-
occurrence matrices of the time frequency plots of HRV or 
RPE sequences. An optimum subset of textural features is 
selected for classification of the records. A multi-layer 
perceptron (MLP) serves as a classifier. To evaluate the 
performance of the proposed method, single Lead ECG 
recordings from 7 normal subjects and 7 obstructive sleep 
apnea patients were used.  With 500 randomized Monte-Carlo 
simulations, the average training sensitivity, specificity and 
accuracy were 100.0%, 99.9%, and 99.9%, respectively. The 
mean testing sensitivity, specificity and accuracy were 99.0%, 
96.7%, and 97.8%, respectively. 

I. INTRODUCTION 
LEEP- Disordered Breathing (SDB) is estimated to have 
a prevalence of at least 6% of US adults [1].  SDB has 

been shown to affect the productivity and quality of life of 
the patient, and an increase in the mortality risk and 
congestive heart failure (CHF) for untreated SDB patients.  
Prevalence is expected to rise for both adults and children 
due to rise in obesity, a significant risk factor for SDB [1].  
The general adult population is widely thought to be under 
diagnosed, because the present method of diagnosing SDB, 
nocturnal polysomnography (NPSG), is relatively expensive 
and not readily accessible.  Cost effective and more 
accessible means to screen the at-risk population for SDB 
are highly desirable. 

Previous studies [2] have shown the possibility of 
screening for OSA episodes using overnight ECG 
recordings.  Different algorithms have been developed to 
extract reliable markers from ECG signals including heart 
rate variability (HRV), R-Peak Envelope (RPE), and power 
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spectral analysis of particular frequency bands of different 
ECG-derived respiration (EDR) signals.  The use of HRV is 
appealing, as it reflects the autonomic response to apnea 
episodes.  One study has combined different temporal 
statistical features from HRV and RPE to improve the 
detection rate, reporting accuracy of about 90% [3].  
Different investigators have qualitatively explored 
spectrograms of HRV for the detection of OSA using ECG 
[2].  

Our previous work have shown similar results in detecting 
SDB events by combining cross-correlation and scatter plot 
features from HRV and RPE [4].  In this paper, we combine 
textural features extracted from the spectrograms of both 
HRV and RPE to detect SDB events.  A multi-layer 
perceptron (MLP) classifier is used to   detect SDB events.  

II. METHODOLOGY 

A. Subjects 
Seven volunteers who had no known history of SDB and 

seven volunteers who had been positively diagnosed as 
having SDB were recruited for the study.  The subjects 
underwent a full night (6 to 8 hours) of NPSG. The test were 
performed at Sleep Consultants, Inc., Fort Worth, TX, an 
accredit sleep laboratory.  A certified sleep expert, blind to 
the aims of this study, scored the NPSG data according to 
Rechtschaffen & Kales standard.  The severity of SDB was 
measured using the apnea-hypopnea index (AHI). Table I 
summarizes the subject population demographics. 

 
TABLE I 

SUBJECT DEMOGRAPHICS OF THE NORMAL AND SDB SUBJECT GROUPS 
INCLUDING THE APNEA/HYPOPNEA INDEX 

Subject 
Group 

(N) 

Number of 
Males/Females 

Age 
(mean ±std) 

BMI 
(mean ±std) 

AHI 
(mean ±std) 

NOR (7) 5/2 43.0±8.6 24.7±4.3 4.4±3.6
OSA (7) 2/5 51.1±9.8 34.2±7.0 38.7±18.9 

B. Experimental Protocol 
The physiological markers were reordered during the 

NPSG study included ECG, EEG, SaO2, and airflow.  As 
part of the NPSG recording, ECG Lead I was digitally 
recorded at 1 kHz sample rate.  These recordings were used 
to extract both the RR and RPE time sequences [3].  The 
data was parsed into epoch of 900 seconds (15 min) in 
length to capture very low RR variations (~0.001Hz), as 
recommended by previous investigators [5].  Fifty six 
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epochs were used, 4 epochs from each subject.  The RR and 
RPE were interpolated using cubic spline technique, and the 
resulting function was uniformly sampled at 1 Hz.  

C. Image Construction 
Short Time Discrete Fourier Transform (STDFT) was 

separately performed on both the uniformly sampled RR and 
RPE time series, resulting into spectrograms. Fig. 1 shows a 
comparison between spectrograms extracted from RR and 
RPE sequences for a normal clip verses a clip containing 
SDB events.  Visual differences can be observed between 
normal and SDB clips for both RR and RPE sequences.   

 

 
(a) Spectrogram from an RR sequence of a normal 15-min epoch 

 
(b) Spectrogram from an RR sequence of an SDB 15-min epoch 

 
(c) Spectrogram from an RPE sequence of a normal 15-min epoch 

 
(d) Spectrogram from an RPE sequence of an SDB 15-min epoch 

 
Fig. 1. Comparison between spectrograms extracted from RR and RPE 
sequences for a normal clip verses a clip containing SDB events.  Visual 
differences can be observed between normal and SDB clips for both RR and 
RPE sequences.  The described method aims at quantifying these visual 
differences, and using these features for further classification. 

 
Each spectrogram extracted from both the RR and RPE 

sequences is encoded to produce four gray level intensity 
images: First image is generated by finding the magnitude of 
the complex spectrogram matrix, and quantizing it to 16 
equally spaced gray levels (Ng = 16) – darker shades 
represents lower power intensities and brighter shades 
represent higher power intensities.  The second image was 
generated using the same method for the first image, but 
with 32 gray levels (Ng  = 32).  Third image was generated 
by computing the log of the magnitude of spectrogram 

magnitudes before quantizing it to 16 gray levels (Ng = 16).  
Finally,  the fourth image was constructed by finding the 
histogram of the spectrogram magnitudes, then allocating 
them to un-equal size quantization bins, so that each gray 
shade would be represented in the image (Ng = 16)  [7].  

D. Co-occurrence Matrices and Textural Features 
Normalized gray level co-occurrence matrices (NCM) [8] 

were used to quantitatively analyze the resultant images. 
Due to the significance of the lower range frequency in 
reflecting apnea events (0-0.25Hz) [2], two NCMs (NCM-3 
and -9) were calculated for the lower half of the images.  

Ten NCMs were extracted from the four gray encoded 
images described earlier [7].  Here, d represents the distance 
of the pairing of the pixels, and θ is the orientation.  From 
the first image, four NCMs were selected: 

• NCM-1 (d = 5, θ = 90º) 
• NCM-2 (d = 1, θ = 90º) 
• NCM-3 (d = 5, θ = 90º) 
• NCM-4 (d = 5, θ = 0º) 
From the second image, three NCMs were selected: 
• NCM-5 (d = 5, θ = 90º)  
• NCM-6 (d = 3, θ = 90º)  
• NCM-7 (d = 1, θ = 90º)  
From the third image, two NCMs were selected: 
• NCM-8 (d = 5, θ = 90º) 
• NCM-9 (d = 5, θ = 90º)  
From fourth image, one NCM was selected: 
• NCM-10 (d = 5, θ = 90º) 
Nine textural features [9–10] were computed from these 

NCMs. The Matrix Mean and Matrix Variance are defined 
as follows [11]: 
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where Ng is the number of gray levels used in the image, 
M is an Ng×Ng gray level co-occurrence symmetric matrix 
with M(i,j) as its ith, jth element for i = j = 1, 2, 3, …, Ng. 

E. Optimum Feature Selection 
For each of the 56 15-min epochs, a total of 180 textual 

features were computed. That is, 90 textural features were 
extracted from the RR sequence, and 90 textural features 
were extracted from the RPE sequence. It is noted that 180 
features are generated by computing the textural feature (2) 
– (10) above, for each of the 10 NCMs defined earlier.  A 
Piecewise Linear Networks (PLN) algorithm was used [12] 
to find the optimum feature subset.  The PLN utilizes a 
piecewise linear orthonormal least square procedure.  It 
selects the feature subset that is optimal for use with the 
MLP classifier in a computationally efficient fashion, as it 
requires only one pass of the data. The features extracted 
from the data are divided into an appropriate number of 
clusters and auto- and cross-correlation matrices are 
calculated only once. Then, it finds combinations of features 
that have high potential for classification of signal source 
[12].  The training vectors for the classifier will include only 
the optimum features selected. 

F. Multilayer Perceptron Classifier 
Multilayer perceptron (MLP) is a form of feed-forward 

neural network (FFNN).  Its simple structure allows for 
relatively easy training, using conventional back-
propagation (BP) training algorithms.  It has been shown 
that MLP classifiers are very successful in image 
classification applications [13].  A classifier is constructed 
using a three-layer MLP consisting of an input layer, hidden 
layer and an output layer. The input layer has a number of 
nodes equal to the input vector length. The output layer 
consists of one node, accounting for a possibility of only 2 
classes to be classified. The number of nodes in the hidden 
layer, Nh, is selected by an iterative training and validation 
scheme. Besides changing the number of hidden nodes, each 
layer of a MLP has two parameters that are selected to 
achieve maximum detection: node transfer function and 
weight vector. Both input and output nodes use linear 
transfer functions. The hidden layer uses a hyperbolic 
tangent sigmoid function [13]. 

G. Training and Validation 
The epochs in the data set were randomly divided into two 

sets: a Training Set and a Testing Set.  Seventy percent of 
the epochs are used to train the MLP (39 epochs), while 30% 
(17 epochs) were kept separate to test the performance of the 
classifier.  

Furthermore, the training set is divided to 3 subsets (13 
epochs each).  A 3-fold cross-validation (k-fold XV) scheme 
is used to find the optimum number of hidden nodes, Nh, and 
the number of training iterations to achieve the maximum 
validation. Fig. 2. illustrates this process. 

 
Fig. 2.  Schematics showing the assignment of clips for training, validation 
and testing. The original 56 clips are randomly divided to 39 clips for 
training and validation, and 17 clips for blind testing. The 39 clips are 
divided to 3 subset of 13 for a 3-fold cross validation. 

H. Testing 
Once the optimum topography of the MPL is selected, the 

MLP is trained using all 39 training vectors.  Then, the MLP 
weights and bias vectors are fixed, and the Testing Set of 17 
vectors is run once to test the performance of the classifier 
[13]. 

I. Sensitivity, Specificity, and Accuracy 
The performance of the system is described by 

Sensitivity = %100×
testedclipsSDBTotal

SDBc     (11) 

Specificity = %100×
testedclipsNORTotal

NORc    (12) 

Accuracy = %100
&

×+
clipsSDBNORTotal

NORSDB cc     (13) 

 
where SDBc is the number of correctly detected SDB clips 

and NORc is the number of correctly detected NOR clips [7]. 

J. Monte Carlo Simulation 
Since the optimization process described above is partially 

dependent on the initial vector assignment to Training and 
Testing Sets, a Monte Carlo simulation method was devised 
to estimate the average performance of the MLP classifier.  
With the MLP topology fixed, the data set is randomly 
divided into training and testing sets with a 70% to 30% 
ratio, and the MLP is trained using the training set, then the 
performance of the system is tested using testing set, not 
seen by the NNFF.  This process is repeated 500 times, and 
the average training and testing sensitivity, specificity, and 
accuracy are obtained. 

39 clips 13 clips

13 clips

13 clips17 clips 

56 clips

Original clips Training 3-fold Cross 
Validation

Testing 
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III. RESULTS 

A. Feature Selection 
Once the Using the PLN algorithm, the following thirteen 

features comprise the optimal feature subset:  
Nine textural features the RR sequence 
ASM2; IDM4; COR4; ASM4;  
ENT4; IND4; ENT8; IND9; ASM10 
And four textural features from the RPE sequence  
IDM2; IDM4; IDM5; IDM8  
where the subscript indicates the NCM that the feature 

was extracted from. A vector containing the above optimized 
features was used as an input to the MLP classifier.  

B. Testing and Validation 
Using a 3-fold cross validation scheme, and using the 

Levenberg-Marquardt (LM) training algorithm for the MLP, 
the resulting optimum training-validation MLP topology  
was 3-layer MLP, with an input layer of 13 nodes, equal to 
the length of a training vector, a hidden layer with 8 nodes, 
and an output layer with one unit.  An optimal validation is 
achieved when the MLP is trained for 46 iterations. 

C. Monte Carlo Testing Results 
Table II shows summary of the training and testing 

detection results after a 500-run Monte Carlo simulation. 
TABLE II 

AVERAGE SENSETIVITY, SPECIFICITY, AND ACCURACY OF A MLP 
CLASSIFIER FOR A 500-RUN MONTE CARLO SIMULATION 

 Sensitivity Specificity Accuracy 
Training 100.0% 99.9% 99.9%
Testing 99.0% 96.7% 97.8% 

IV. DISCUSSION 
By studying the images in Figure 1, it is evident that there 

are notable differences in the power distribution of the 
spectrograms of RR and RPE for normal epochs compared 
to epochs containing SDB events.  To quantify these 
differences, image processing techniques were applied to 
extract textural features from these spectrograms.  

The IDM feature extracted from RPE spectrogram images 
appears to be the major contributors for these sequences, and 
might be useful in minimizing the calculation complexity 
when extracting further features. 

Using 3-fold cross validation for the optimal MLP 
topography produced a 3 layer MLP, with 8 hidden nodes in 
the hidden layer.  A Monte Carlo simulation for 500 runs 
produced a training accuracy of 99.9%, and a testing 
accuracy of 97.8%.  While these results are highly 
encouraging, it is recognized that the method needs to be 
further tested in a larger sample population.  

The method described here can readily be implemented 
for large scale screening of severe SDB cases, and offers a 
means to health care providers for screening patients 
suspected of having SDB at reduced cost. 

V. CONCLUSION 
By combining optimal HRV and RPE textural features as 

inputs to an MLP classifier, higher accuracy classification of 
normal and SDB event in 15-minute epochs was achieved, 
surpassing the accuracy achieved by RR optimal features 
alone.  The textural features presented here have high 
potential in increasing the accuracy of the detection of SDB 
events using a single ECG channel.  
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