31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

Acoustic Obstructive sleep apnea detection

Azadeh Yadollahi, Student Member, IEEE and Zahra Moussavi, Senior Member, IEEE

Abstract— Obstructive sleep apnea (OSA) is a common
respiratory disorder during sleep, in which the airways are
collapsed and impair the respiration. Apnea is s cessation
of airflow to the lungs which lasts at least for 10s. The
current gold standard method for OSA assessment is full night
polysomnography (PSG); however, its high cost, inconvenience
for patients and immobility have persuaded researchers to seek
simple and portable devices to detect OSA. In this paper, we
report on developing a new system for OSA detection and
monitoring, which only requires two data channels: tracheal
breathing sounds and the blood oxygen saturation level (S,02).
A fully automated method was developed that uses the energy of
breathing sounds signals to segment the signals into sound and
silent segments. Then, the sound segments are classified into
breath, snore (if exists) and noise segments. The S,O- signal is
analyzed to find the rises and drops in the S,O; signal. Finally,
a fuzzy algorithm was developed to use this information and
detect apnea and hypopnea events. The method was evaluated
on the data of 40 patients simultaneously with full night PSG
study, and the results were compared with those of the PSG.
The results show high correlation (96%) between our system
and PSG. Also, the method has been found to have sensitivity
and specificity values of more than 90% in differentiating simple
snorers from OSA patients.

I. INTRODUCTION

Obstructive sleep apnea (OSA) is a common respiratory
disorder during sleep, in which the airways are collapsed and
impair the respiration. It is diagnosed by detecting periods
of cessation of breathing (Apnea) or reduced breathing level
(hypopnea) which lasts more than 10s, and are associated
with a minimum of 4% drop in oxygen saturation level
in blood (S5,02) [1]. Severity of OSA is measured by the
number of apnea and hypopnea events per hour (AHI index).
About 24% of men and 9% of women aged 30 — 60 years
were found to have AHI > 5 [2]. The main consequences
of sleep apnea are daytime sleepiness [3], increased risk
of cardiovascular disease [4, 5], traffic accidents [6] and
impaired quality of life [7].

Full night polysomnography (PSG) is the current gold
standard method for OSA diagnosis [8, 9]. However, the high
cost of PSG, uncomfort for the patients and the very long
waiting lists have persuaded researchers to look for simple
and portable monitoring devices that can detect OSA with
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high accuracy and smaller number of sensors than the con-
ventional PSG [10, 11]. In these devices, nasal pressure [12,
13], S,O2 signal [14], respiratory sounds [15, 16] or a
combination of 3-4 signals [17-19] are used for estimating
the AHI index of the patient. However, nasal pressure flow
meters are not only inconvenient for the patient, but also they
may fail to give an accurate estimate of breathing flow rate
due to the misplacement of the sensor during the night or
in case of mouth—breathing. On the other hand, in addition
to sleep apnea, there are other factors such as body position
variations that can cause drops in the S,O- signal; hence,
affecting the accuracy of the methods that are mainly based
on the 5,05 signal for OSA detection.

Tracheal respiratory sounds convey important information
on the pathology and physiology of the airways [20, 21];
hence, respiratory sounds analysis during sleep can reveal
useful information about the changes in breathing pattern
of the patient. Also, tracheal sounds can be used for res-
piratory flow estimation [22]. This paper reports on our
new ambulatory technology (ASAD) for OSA detection and
monitoring. The premise of the system is on the analysis
of tracheal respiratory sounds and S,O- signal to estimate
the AHI index of the patient. The novelty of the system is
its simplicity (using only two data channels) and accuracy
compared to that of PSG.

II. METHOD
A. System architecture

Our developed system records two signals: tracheal res-
piratory sounds and S,O>. The sounds are recorded with a
small microphone placed on the neck of the patient over the
suprasternal notch. The microphone is inserted in a chamber,
and attached to the skin with double sided adhesive tape.
The microphone and chamber are held in place with a soft
neck band that is fastened gently around the patient’s neck
to ensure comfortability during sleep. The level of S,O5 is
recorded with a finger probe device, and its analog output
(between 0 and 1 corresponding to 0 — 100% saturation) is
fed to the data acquisition module. The sound signals are
amplified and lowpass filtered with the cutoff frequency of
5 kH z. Finally, the amplified sound signals and S, O signal
are digitized with the sampling rate of 10240 Hz.

A LabView based software was developed to record and
save the digitized signals on a laptop computer. To synchro-
nize our recording device with the PSG system, the clock of
our laptop and the PSG were synchronized, and the start time
on our recording system was automatically saved in a text
file; this information was later used to retrieve the exact time
of different events and associate them with the PSG-based
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Fig. 1.

ASAD recording hardware.

TABLE I
PATIENTS’ DEMOGRAPHIC INFORMATION.

Parameter H Age (u £ o) [ BMI (1 £ o) [ AHI (1 £ o) ]

526 £ 12.2 | 323+53 | 31.4+36.0
[25 —87] | [22.5—47.9] | [0.8 — 125.7]

Average
Range

information. Figure 1 shows the view of our recording device
at its research stage. Later, we developed a prototype which
is much smaller in size, and also has a microprocessor inside;
hence, it is independent of the computer for recording. The
developed system is capable of acquiring and recording data
during the entire night.

B. Data recording

Forty patients going through full-night PSG study at the
Health Sciences Center Sleep Disorders Clinic (Winnipeg,
Canada) consented to participate in this study. Subjects
were recruited randomly with no limitations in terms of
age, gender or BMI. The study was approved the Ethics
board of University of Manitoba prior to experiments. The
patients’ demographic detailed information is shown in Ta-
ble I. The sounds were recorded with a Sony (ECM-77B)
microphone, and were amplified and lowpass filtered using
Biopac (DA100C) amplifiers. The filtered breath sound and
5,04 signals were digitized by National Instruments data
acquisition module (N79217) and saved in a file every 3
minute (resulting approximately 140 files for every night of
recording).

C. Signal Analysis

1) Automatic sound segmentation: The recorded sounds
were first highpass filtered with a Butterworth filter of order
5 and cutoff frequency of 200H 2z to remove low frequency
noises including motion artifacts and heart sounds. The
filtered sounds were segmented into windows of 20ms in
duration with 75% overlap between the adjacent windows.
In each window, the logarithm of the variance of the signal,
LogV ar, was calculated. The median of the LogV ar values
of all windows was used as a threshold to classify the
windows into sound or silent windows.

2) Apnea-Hypopnea detection: The cessation or reduction
of breathing level are counted as an event if they are associ-
ated with a minimum drop of 4% in the S, signal. Given
that S, O, signal is a low frequency signal, it is much faster

and more efficient to analyze this signal and determine its
drops and rises than analyzing the breath sounds. Therefore,
in the first step, the 5,02 signal was analyzed, and all the
drops (more than 4%) and rises of the signal were marked.
Then, the tracheal sounds within the periods between a drop
and the following rise in the S,O- were found, and analyzed
for apnea/hypopnea event detection.

We have shown that energy of the tracheal sounds in
log scale is linearly related to the amount of respiratory
flow [22]. Hence, by analyzing the breath sound signal
we can have a good estimate of the reduction of the flow
(hypopnea) or lack of flow (apnea). Therefore, in each period
of S,05 drop, the energy of the sound segments and their
duration were compared with those of the normal breathing
of the subject in the wake period. Note that a few minutes
of breath sounds of the subject at the beginning of each
recording when he/she was awake, was used to derive the
energy level and duration of the normal respiratory cycle of
the subject as a reference.

An apnea event is defined as the cessation of breathing
for at least 10s. It is easily detected by finding the periods,
in which the sounds energy is below 90% of the reference
value, and its duration is more than 10s. However, detecting
hypopnea events is more complicated; they can be either in
terms of very shallow breathing, short durations of normal
breathings with periods of no-breathing in between or com-
binations of shallow breathing and snoring which indicates
partial obstruction in the airways. All of these conditions may
result in a deficiency in the breathing level and a drop in the
S, 02 signal. Furthermore, these conditions are different for
each subject, and they even change during the night for the
same subject.

Therefore, a smart function was developed which uses
the sound segments energy, duration and the relationship
between the energy values of the adjacent segments to
classify tracheal signal segments into silence, breathing,
snoring and noise (clicks, body movements, blanket noise)
segments (Fig. 2). To consider different situations that can
cause apnea or hypopnea event in a period with a drop
in S,0 signal, four parameters of sound segments were
investigated. The first parameter is the total energy of the
breath sound segments which shows the breathing level and
will distinguish an apnea event or a hypopnea event due
to shallow breathing. The second parameter is the duration
percentage of the breathing sound segments, which is cor-
related to the first parameter and improves its performance.
Since, snore sounds are common during hypopnea events,
the third parameter is the duration percentage of snore sound
segments in each period of S,O5 drop. The last parameter is
the amount of drop in S, 05 signal which is used to represent
the severity of the event. Then, each parameter is fuzzified
with a sigmoid function and the fuzzy output of the four
fuzzy functions are added together; if it is less than 0.5, the
period is considered as an apnea/hypopnea event.

For each subject, the apnea and hypopnea events were
estimated with the above mentioned method, the AHI index
was calculated (AHIas54p), and was compared with that
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Fig. 2. A typical 16 period with the sound segmentation and classification
results.

of the PSG study (AH Ipgsq) that were manually calculated
by the sleep lab technicians. The two AHI indeces were
compared in terms of linear correlation and Bland-Altman
measures among the subjects [23]. Bland-Altman measure is
widely used in analyzing biomedical data, and is designed to
measure the agreement between two methods that investigate
the same property. Finally, the estimated AH I s4p values
were used to classify the subjects into two groups of simple
snorers and OSA patients. However, there is no specific
threshold of AHI as the gold standard value to differentiate
simple snorers from OSA patients. Therefore, four different
values of AHIpgg were used as the thresholds to find
the true classification of subjects. For each threshold, the
AHI o5 4p values were used to classify the subjects, and the
receiver operating curve (ROC) and the area under the ROC
curve (AUC) were estimated to evaluate the performance of
the classifier.

ITII. RESULTS AND DISCUSSION

Due to the huge amount of the processed data, it was
impossible to verify the results of sound segments classifica-
tion into sound, silent and noise in detail. However, for some
random periods the results of sound segments classification
were examined manually, and the results were found to be
promising (more than 95% accuracy).

The results of sound segments classification and amount
of drop in the S,0- signal were used to determine the
occurrence of an apnea or hypopnea event and the AHI index
was calculated for each subject. The patients’ AHI indeces
calculated by our proposed automated acoustic method were
compared with those of the PSG study. It should be noted
that ASAD and PSG scoring were performed completely
independent from each other, and the PSG information was
only used to verify the results. Figure 3 shows the scatter
plot of the AHIzgs4p and AHIpgg values.

The correlation ratio between the AHIssap and
AH Ipgq values was found to be 0.96, indicating a very high
correlation between the performance of the two systems. In
addition, Bland-Altman test was performed, and the average
and standard deviation values were 0.92 and 6.15, respec-
tively; only 3 subjects were outside the 95% confidence
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Fig. 3. Scatter plot of the AHIps4p and AHIpg¢ values.
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Fig. 4. Bland-Altman plots between the AHIgs4p and AHIpgq, the
solid line shows the average difference and the dashed lines present the
mean F 1.96 of standard deviation of the difference.

interval (Fig. 4). The statistical results of the propsed system
was found to be similar or better than the results of the
previously proposed portable monitoring devices [12-19].
However, since we are recording breathing and snore sounds
with high quality, our system can also provide information
about the breathing pattern and airway condition of the
patient during different events.

Finally, AHI4s4p values were used as a threshold to
classify the subjects into simple snores (SS) and OSA pa-
tients, and the ROC curve and AUC values were estimated to
investigate the performance of the classifier. The experiment
was repeated for four different thresholds of AH Ipg¢q values
(5,10, 15,20) corresponding to different severity levels of
OSA as the reference in finding the true classes of the sub-
jects (Fig. 5). The values of AUC for different thresholds of
AH Ipgg values are shown in Table II. The higher the values
of AUC, the better the performance of the classifier. For each
threshold of AHIpgq the best sensitivity and specificity
values with the corresponding threshold of AHI g4p are
shown (Table II). It can be seen that the proposed method
has high specificity and sensitivity in differentiating between
simple snorers and OSA patients. Overall, the calculated
AHIAsap indeces by the proposed method are close to
those of the PSG study but slightly under—estimated in severe
cases; this has also been the case in previous studies.

IV. CONCLUSION

In this study a new fully automatic acoustic method was
developed to detect apnea and hypopnea events with no need
for respiratory flow measurement. The method uses only
tracheal respiratory sounds and S,02 signals to find the
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Fig. 5. ROC curves of the classifier for different thresholds of AHIpgq.

TABLE II
AREA UNDER THE CURVE (AUC) OF THE CLASSIFIER FOR DIFFERENT
THRESHOLDS OF AHIpgg.

AHIpgqg Threshold 5 10 15 20
AUC 0.856 | 0.884 | 0.915 | 0.962
Sensitivity 88.9 82.4 92.3 | 100.0
Specificity 92.3 91.3 96.3 96.7
AHIasap 5 9 12 18

events. Tracheal respiratory sounds were segmented automat-
ically to sound and silent segments, and the sound segments
were classified into breathing, snore and noise segments.
The AHI indeces of the proposed method (AHIas4p) Was
compared with those of the PSG analysis, and the correlation
between the outcomes of the two systems were found to
be very high (0.96). Also, the results of Bland-Altman test
revealed that only 3 out of 40 subjects were out of 95%
confidence interval, idicating a high accuracy of the proposed
system. Furthermore, the classification results of the subjects
into simple snorer and OSA patients shows sensitivity and
specificity of more than 90%. Overall, the results of the
proposed method were found to be similar or superior to
those of the previous proposed amulatory devices. However,
in this method, respiratory breath and snore sounds are
recorded with high quality which can be used to extract
further information regarding the physiolgy of upper airways
and breathing pattern of the patient.
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