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Abstract— Obstructive sleep apnea (OSA) is a common
respiratory disorder during sleep, in which the airways are
collapsed and impair the respiration. Apnea is s cessation
of airflow to the lungs which lasts at least for 10s. The
current gold standard method for OSA assessment is full night
polysomnography (PSG); however, its high cost, inconvenience
for patients and immobility have persuaded researchers to seek
simple and portable devices to detect OSA. In this paper, we
report on developing a new system for OSA detection and
monitoring, which only requires two data channels: tracheal
breathing sounds and the blood oxygen saturation level (SaO2).
A fully automated method was developed that uses the energy of
breathing sounds signals to segment the signals into sound and
silent segments. Then, the sound segments are classified into
breath, snore (if exists) and noise segments. The SaO2 signal is
analyzed to find the rises and drops in the SaO2 signal. Finally,
a fuzzy algorithm was developed to use this information and
detect apnea and hypopnea events. The method was evaluated
on the data of 40 patients simultaneously with full night PSG
study, and the results were compared with those of the PSG.
The results show high correlation (96%) between our system
and PSG. Also, the method has been found to have sensitivity
and specificity values of more than 90% in differentiating simple
snorers from OSA patients.

I. INTRODUCTION

Obstructive sleep apnea (OSA) is a common respiratory

disorder during sleep, in which the airways are collapsed and

impair the respiration. It is diagnosed by detecting periods

of cessation of breathing (Apnea) or reduced breathing level

(hypopnea) which lasts more than 10s, and are associated

with a minimum of 4% drop in oxygen saturation level

in blood (SaO2) [1]. Severity of OSA is measured by the

number of apnea and hypopnea events per hour (AHI index).

About 24% of men and 9% of women aged 30 − 60 years

were found to have AHI ≥ 5 [2]. The main consequences

of sleep apnea are daytime sleepiness [3], increased risk

of cardiovascular disease [4, 5], traffic accidents [6] and

impaired quality of life [7].

Full night polysomnography (PSG) is the current gold

standard method for OSA diagnosis [8, 9]. However, the high

cost of PSG, uncomfort for the patients and the very long

waiting lists have persuaded researchers to look for simple

and portable monitoring devices that can detect OSA with
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high accuracy and smaller number of sensors than the con-

ventional PSG [10, 11]. In these devices, nasal pressure [12,

13], SaO2 signal [14], respiratory sounds [15, 16] or a

combination of 3-4 signals [17-19] are used for estimating

the AHI index of the patient. However, nasal pressure flow

meters are not only inconvenient for the patient, but also they

may fail to give an accurate estimate of breathing flow rate

due to the misplacement of the sensor during the night or

in case of mouth–breathing. On the other hand, in addition

to sleep apnea, there are other factors such as body position

variations that can cause drops in the SaO2 signal; hence,

affecting the accuracy of the methods that are mainly based

on the SaO2 signal for OSA detection.

Tracheal respiratory sounds convey important information

on the pathology and physiology of the airways [20, 21];

hence, respiratory sounds analysis during sleep can reveal

useful information about the changes in breathing pattern

of the patient. Also, tracheal sounds can be used for res-

piratory flow estimation [22]. This paper reports on our

new ambulatory technology (ASAD) for OSA detection and

monitoring. The premise of the system is on the analysis

of tracheal respiratory sounds and SaO2 signal to estimate

the AHI index of the patient. The novelty of the system is

its simplicity (using only two data channels) and accuracy

compared to that of PSG.

II. METHOD

A. System architecture

Our developed system records two signals: tracheal res-

piratory sounds and SaO2. The sounds are recorded with a

small microphone placed on the neck of the patient over the

suprasternal notch. The microphone is inserted in a chamber,

and attached to the skin with double sided adhesive tape.

The microphone and chamber are held in place with a soft

neck band that is fastened gently around the patient’s neck

to ensure comfortability during sleep. The level of SaO2 is

recorded with a finger probe device, and its analog output

(between 0 and 1 corresponding to 0 − 100% saturation) is

fed to the data acquisition module. The sound signals are

amplified and lowpass filtered with the cutoff frequency of

5 kHz. Finally, the amplified sound signals and SaO2 signal

are digitized with the sampling rate of 10240 Hz.

A LabView based software was developed to record and

save the digitized signals on a laptop computer. To synchro-

nize our recording device with the PSG system, the clock of

our laptop and the PSG were synchronized, and the start time

on our recording system was automatically saved in a text

file; this information was later used to retrieve the exact time

of different events and associate them with the PSG–based
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Fig. 1. ASAD recording hardware.

TABLE I

PATIENTS’ DEMOGRAPHIC INFORMATION.

Parameter Age (µ ± σ) BMI (µ ± σ) AHI (µ ± σ)

Average 52.6 ± 12.2 32.3 ± 5.3 31.4 ± 36.0

Range [25 − 87] [22.5 − 47.9] [0.8 − 125.7]

information. Figure 1 shows the view of our recording device

at its research stage. Later, we developed a prototype which

is much smaller in size, and also has a microprocessor inside;

hence, it is independent of the computer for recording. The

developed system is capable of acquiring and recording data

during the entire night.

B. Data recording

Forty patients going through full–night PSG study at the

Health Sciences Center Sleep Disorders Clinic (Winnipeg,

Canada) consented to participate in this study. Subjects

were recruited randomly with no limitations in terms of

age, gender or BMI. The study was approved the Ethics

board of University of Manitoba prior to experiments. The

patients’ demographic detailed information is shown in Ta-

ble I. The sounds were recorded with a Sony (ECM-77B)

microphone, and were amplified and lowpass filtered using

Biopac (DA100C) amplifiers. The filtered breath sound and

SaO2 signals were digitized by National Instruments data

acquisition module (NI9217) and saved in a file every 3

minute (resulting approximately 140 files for every night of

recording).

C. Signal Analysis

1) Automatic sound segmentation: The recorded sounds

were first highpass filtered with a Butterworth filter of order

5 and cutoff frequency of 200Hz to remove low frequency

noises including motion artifacts and heart sounds. The

filtered sounds were segmented into windows of 20ms in

duration with 75% overlap between the adjacent windows.

In each window, the logarithm of the variance of the signal,

LogV ar, was calculated. The median of the LogV ar values

of all windows was used as a threshold to classify the

windows into sound or silent windows.

2) Apnea-Hypopnea detection: The cessation or reduction

of breathing level are counted as an event if they are associ-

ated with a minimum drop of 4% in the SaO2 signal. Given

that SaO2 signal is a low frequency signal, it is much faster

and more efficient to analyze this signal and determine its

drops and rises than analyzing the breath sounds. Therefore,

in the first step, the SaO2 signal was analyzed, and all the

drops (more than 4%) and rises of the signal were marked.

Then, the tracheal sounds within the periods between a drop

and the following rise in the SaO2 were found, and analyzed

for apnea/hypopnea event detection.

We have shown that energy of the tracheal sounds in

log scale is linearly related to the amount of respiratory

flow [22]. Hence, by analyzing the breath sound signal

we can have a good estimate of the reduction of the flow

(hypopnea) or lack of flow (apnea). Therefore, in each period

of SaO2 drop, the energy of the sound segments and their

duration were compared with those of the normal breathing

of the subject in the wake period. Note that a few minutes

of breath sounds of the subject at the beginning of each

recording when he/she was awake, was used to derive the

energy level and duration of the normal respiratory cycle of

the subject as a reference.

An apnea event is defined as the cessation of breathing

for at least 10s. It is easily detected by finding the periods,

in which the sounds energy is below 90% of the reference

value, and its duration is more than 10s. However, detecting

hypopnea events is more complicated; they can be either in

terms of very shallow breathing, short durations of normal

breathings with periods of no–breathing in between or com-

binations of shallow breathing and snoring which indicates

partial obstruction in the airways. All of these conditions may

result in a deficiency in the breathing level and a drop in the

SaO2 signal. Furthermore, these conditions are different for

each subject, and they even change during the night for the

same subject.

Therefore, a smart function was developed which uses

the sound segments energy, duration and the relationship

between the energy values of the adjacent segments to

classify tracheal signal segments into silence, breathing,

snoring and noise (clicks, body movements, blanket noise)

segments (Fig. 2). To consider different situations that can

cause apnea or hypopnea event in a period with a drop

in SaO2 signal, four parameters of sound segments were

investigated. The first parameter is the total energy of the

breath sound segments which shows the breathing level and

will distinguish an apnea event or a hypopnea event due

to shallow breathing. The second parameter is the duration

percentage of the breathing sound segments, which is cor-

related to the first parameter and improves its performance.

Since, snore sounds are common during hypopnea events,

the third parameter is the duration percentage of snore sound

segments in each period of SaO2 drop. The last parameter is

the amount of drop in SaO2 signal which is used to represent

the severity of the event. Then, each parameter is fuzzified

with a sigmoid function and the fuzzy output of the four

fuzzy functions are added together; if it is less than 0.5, the

period is considered as an apnea/hypopnea event.

For each subject, the apnea and hypopnea events were

estimated with the above mentioned method, the AHI index

was calculated (AHIASAD), and was compared with that
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Fig. 2. A typical 16 period with the sound segmentation and classification
results.

of the PSG study (AHIPSG) that were manually calculated

by the sleep lab technicians. The two AHI indeces were

compared in terms of linear correlation and Bland-Altman

measures among the subjects [23]. Bland-Altman measure is

widely used in analyzing biomedical data, and is designed to

measure the agreement between two methods that investigate

the same property. Finally, the estimated AHIASAD values

were used to classify the subjects into two groups of simple

snorers and OSA patients. However, there is no specific

threshold of AHI as the gold standard value to differentiate

simple snorers from OSA patients. Therefore, four different

values of AHIPSG were used as the thresholds to find

the true classification of subjects. For each threshold, the

AHIASAD values were used to classify the subjects, and the

receiver operating curve (ROC) and the area under the ROC

curve (AUC) were estimated to evaluate the performance of

the classifier.

III. RESULTS AND DISCUSSION

Due to the huge amount of the processed data, it was

impossible to verify the results of sound segments classifica-

tion into sound, silent and noise in detail. However, for some

random periods the results of sound segments classification

were examined manually, and the results were found to be

promising (more than 95% accuracy).

The results of sound segments classification and amount

of drop in the SaO2 signal were used to determine the

occurrence of an apnea or hypopnea event and the AHI index

was calculated for each subject. The patients’ AHI indeces

calculated by our proposed automated acoustic method were

compared with those of the PSG study. It should be noted

that ASAD and PSG scoring were performed completely

independent from each other, and the PSG information was

only used to verify the results. Figure 3 shows the scatter

plot of the AHIASAD and AHIPSG values.

The correlation ratio between the AHIASAD and

AHIPSG values was found to be 0.96, indicating a very high

correlation between the performance of the two systems. In

addition, Bland-Altman test was performed, and the average

and standard deviation values were 0.92 and 6.15, respec-

tively; only 3 subjects were outside the 95% confidence
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Fig. 3. Scatter plot of the AHIASAD and AHIPSG values.
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Fig. 4. Bland-Altman plots between the AHIASAD and AHIPSG, the
solid line shows the average difference and the dashed lines present the
mean ± 1.96 of standard deviation of the difference.

interval (Fig. 4). The statistical results of the propsed system

was found to be similar or better than the results of the

previously proposed portable monitoring devices [12-19].

However, since we are recording breathing and snore sounds

with high quality, our system can also provide information

about the breathing pattern and airway condition of the

patient during different events.

Finally, AHIASAD values were used as a threshold to

classify the subjects into simple snores (SS) and OSA pa-

tients, and the ROC curve and AUC values were estimated to

investigate the performance of the classifier. The experiment

was repeated for four different thresholds of AHIPSG values

(5, 10, 15, 20) corresponding to different severity levels of

OSA as the reference in finding the true classes of the sub-

jects (Fig. 5). The values of AUC for different thresholds of

AHIPSG values are shown in Table II. The higher the values

of AUC, the better the performance of the classifier. For each

threshold of AHIPSG the best sensitivity and specificity

values with the corresponding threshold of AHIASAD are

shown (Table II). It can be seen that the proposed method

has high specificity and sensitivity in differentiating between

simple snorers and OSA patients. Overall, the calculated

AHIASAD indeces by the proposed method are close to

those of the PSG study but slightly under–estimated in severe

cases; this has also been the case in previous studies.

IV. CONCLUSION

In this study a new fully automatic acoustic method was

developed to detect apnea and hypopnea events with no need

for respiratory flow measurement. The method uses only

tracheal respiratory sounds and SaO2 signals to find the
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Fig. 5. ROC curves of the classifier for different thresholds of AHIPSG.

TABLE II

AREA UNDER THE CURVE (AUC) OF THE CLASSIFIER FOR DIFFERENT

THRESHOLDS OF AHIPSG .

AHIPSG Threshold 5 10 15 20

AUC 0.856 0.884 0.915 0.962

Sensitivity 88.9 82.4 92.3 100.0

Specificity 92.3 91.3 96.3 96.7

AHIASAD 5 9 12 18

events. Tracheal respiratory sounds were segmented automat-

ically to sound and silent segments, and the sound segments

were classified into breathing, snore and noise segments.

The AHI indeces of the proposed method (AHIASAD) was

compared with those of the PSG analysis, and the correlation

between the outcomes of the two systems were found to

be very high (0.96). Also, the results of Bland-Altman test

revealed that only 3 out of 40 subjects were out of 95%

confidence interval, idicating a high accuracy of the proposed

system. Furthermore, the classification results of the subjects

into simple snorer and OSA patients shows sensitivity and

specificity of more than 90%. Overall, the results of the

proposed method were found to be similar or superior to

those of the previous proposed amulatory devices. However,

in this method, respiratory breath and snore sounds are

recorded with high quality which can be used to extract

further information regarding the physiolgy of upper airways

and breathing pattern of the patient.
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