
  

  

Abstract—The paper proposes a systematic robust 
multivariable control strategy based on combination of 
systematic triangularization technique and robust control 
strategies. Two design stages are required. In the first design 
stage, multivariable control problem is reduced into a series of 
scalar control problems via triangularization technique. For 
each specific scalar system, two advanced control strategies are 
proposed and implemented in the second design stage. The first 
one is based on Model Predictive Control, which is an iterative, 
finite horizon optimization procedure. The second control 
strategy is known as Neuro-Sliding Mode Control, which 
integrates Sliding Mode Control (SMC) and Neural Network 
Design to achieve both chattering-free and system robustness. 
Real-time implementation on a powered wheelchair system 
confirms that robustness and desired performance of a 
multivariable system under model uncertainties and unknown 
external disturbances can indeed be achieved by the 
combination of triangularization technique and Neuro-Sliding 
Mode Control.     

I. INTRODUCTION 
S mobility aid, powered wheelchairs are frequently 
used to provide people with impairment mobility 

greater independence to access school, work and community 
environments. Safety control of conventional powered 
wheelchair, however, requires a significant level of skill, 
attention, judgment and appropriate behavior. The survey in 
[1] shows that nearly half of 200 participants were found 
unable to control a powered wheelchair. Furthermore, 
around 85000 serious wheelchair accidents are occurred, 
and the trend is expected to increase [2].  
 In order to accommodate powered wheelchair users with 
comfort and safety, a lot of progress has been conducted in 
the last decades. However, majority of works focuses on 
navigation strategies on the supervisory control level. Since 
dynamics of a powered wheelchair varies considerably due 
to environment uncertainties and external disturbances, the 
robustness of the overall system depends heavily on low 
level controller performance. Surprisingly, little research has 
been specifically devoted to low control level.  
  In term of low level control design, a powered wheelchair 
can be regarded as a multivariable system with uncertainties 
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and external disturbance [3]. There have been various 
multivariable control techniques, but decoupling control 
techniques provide the very effective solution to 
multivariable problem by reducing it to series of scalar 
problems. However, its researches on robustness under 
system uncertainties and external disturbances have been 
still spare. 

This paper aims at extending decoupling technique known 
as triangularization technique [4] introduced by Hung, an 
author of this paper, to provide a systematic robust 
multivariable control strategy for a class of multivariable 
system. First, a multivariable system is reduced to series of 
independent scalar systems by the triangilarization 
technique. Then a robust controller is designed for an 
independent scalar system. In the control design phase, two 
control schemes are proposed and compared. The first 
control scheme is Model Predictive Control (MPC), which is 
known as advanced control methodology and has been 
applied successfully in different application areas. The 
second control scheme is Neuro-Sliding Mode Control 
(NSMC), which integrates Sliding Mode Control theory and 
Neural Network Design to provide system robustness while 
eliminating chattering phenomenon and avoiding the 
calculation of the plant Jacobian. The effectiveness of the 
proposed strategy is proven via its application to a powered 
wheelchair system. 

The paper is organized as follows. In section II, Robust 
Multivariable Strategy is presented in detail. Its application 
to a powered wheelchair is described in Section III. Real-
time experimental results and discussions are shown in 
Section IV. Conclusion is given in the section V. 

II. ROBUST MULTIVARIABLE STRATEGY 
Two design stages are required in this strategy. First, 

nominal model of multivariable system is used to construct a 
pre-compensator so that the resulting system matrix is 
Triangular-Diagonal-Dominance (TDD), implying that 
multivariable control problem is reduced to series scalar 
control problems. Then two control strategies known as 
MPC and NSCM are proposed in the second design stage.  
 
2.1 Design stage 1: Triangularization with TDD property  

Consider a multivariable system which is given as proper 
square nxn )()(0 sGsG Δ+ . In order to use decoupling 
technique, nominal model of the plant (Go(s)) is used in this 
stage. Two steps are required to construct a desired 
compensator.  
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Figure 2.1: TDD compensator construction procedure 

Step1: Construct a uni-modular pre-compensator matrix 
D(s) over the principal ideal domain so that resulting 
transfer function matrix T(s) = G0(s).D(s) is triangular. As 
pointed out in [4], if Go(s) is stable D(is) can always be 
constructed. D(s) can be constructed in Figure 2.1. 

Step2: Check TDD property of T(s)by using Lemma 6 in 
[4]. If T(s) is TDD, its diagonal elements suffice to 
determine the stability properties of the system. In another 
word, this multivariable control problem is reduced to a 
series of scalar control problem via triangularization 
technique. 
 
2.2 Design stage 2: Control design 

Assume that after decoupling a diagonal element of 
multivariable is in the controllable form as follows: 

( )
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                  (2.1)  

where nRx ∈ , Ru ∈ , nxnRA∈ , 1nxRB ∈ ; nxnRA∈Δ and
xnRB 1∈Δ present bounded uncertainties; )(td is external 

disturbance and 1nxR∈Θ . 

A. Model predictive control design  
Model predictive control predicts and optimizes the future 

behavior of the progress based on a dynamic model of the 
process. At each control interval, MPC algorithm calculates 
an open loop sequence of manipulated variables in such a 
way to optimize the future of the plant.  

Figure 2.2 presents MPC algorithm operating in two 
phases, prediction and optimization, to compute m moves 

11 ,,, −++ mkkk uuu K  based on values of set points, measured 
disturbances and constraints specified over a finite of future 
sampling instants. The moves are solution of a constrained 
optimization problem:  
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Figure 2.2: Model predictive control algorithm description 

For details of formulations, see [5]  

B. Neuro-sliding mode control design 
The sliding surface is defined as:  

)( xxhs d
T −=                            (2.3) 

According to sliding mode theorem presented in [6], the 
control input is obtained as: 

)()()( tututu ceq +=                         (2.4)                      

where )(tueq is the equivalent control, )(tuc is the 

corrective control given in [6] as: 
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Since uc(t) and ueq(t) can  not be directly calculated. Thus, 
these control signals are estimated by two neural networks: 
CNN and ENN  [6].  

The cost functions for two neural networks are as follows 

( ) 22
2
1;ˆ

2
1 sJuuE eqeq =−=                  (2.6) 

The weight adaptation laws for the ENN and CNN aimed 
at minimizing E and J are in following equations: 
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 Since h is adapted online, BΔ  is assumed to be bounded 
so that K in (2.4) can be approximated as:  

[ ] 1−
= BhK Tδ                              (2.10)      

Two training schemes are required. First offline training 
scheme aims at finding the nominal weights of two neural 
controllers so that a desired system performance is attained. 
Two trained neural networks are then used in online training 
scheme to reject uncertainties and external disturbances.   
 For details of NSMC algorithms, see [6].  
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Figure 2.3: The NSCM control structure 

III. APPLICATION TO A POWERED WHEELCHAIR SYSEM 
In [3], the powered wheelchair model is obtained by 

experimental data method. This dynamics varies from lower-
bounded transfer function matrix G1(s) to upper-bounded 
transfer function matrix G2(s). The nominal model of 
wheelchair Go(s) is in simplified form as:  
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Design stage 1: Decoupling design  
The triangularization technique is used to construct the 

desired decoupler D(s).  Detail procedure can be seen in [3]. 
Obtained D(s) is in following form: 
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Thus, the decoupled transfer function matrix  
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Since Po(s) is stable and proper, it has TDD property 
Design stage 2: Control design 
After being decoupled, the wheelchair is decomposed into 

two scalar systems, linear velocity loop and angular velocity 
loop. 

A. Model Predictive Control Design  
Two model predictive controllers, vMPC and wMPC, are 

required for two sub-systems. The control structure is 
presented in the Figure 3.1.  Both MPCs are turned so that 
the cost function defined in (2.2) is minimized. The inputs’ 
constraint of these optimizations is due to the saturation of 
motor input voltages within [-1;1]. 
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Figure 3.1: Multivariable Model Predictive Control Structure 
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Figure 3.2: Step responses of two velocity loops obtained by MMPC 
The outputs constraint of v is within [-1.4;1.4], while that 

of ω is within [-2.6;2.6]. The chosen weighting matrix is Wy 
=1; Wu =0.1. After extensive simulation and experiment, 
predictive horizon and control horizon is chosen as p=7; 
m=2 for both vMPC and wMPC. The Figure 3.2 shows the 
step responses of two subsystems with variations. 

B. Neuro-Sliding Mode Control Design 
Figure 3.3 shows the control structure which requires two 

NSMCs named as NSMC1 and NSMC2 respectively. By trial 
and error, optimal structure of the ENN and CNN of the 
NSMC1 are (4,3,1) and (2,1,1) while that of the NSMC2 are 
(6,3,1) and (3,1,1). Off-line training algorithm is first 
introduced to find the nominal weights, which can provide 
optimal performance of whole system. 

NSMC1’s parameters: 1;03.0;05.0;8.0 ==== uKδμη   
NSMC2’s parameters: 1;02.0;03.0;65.0 ==== uKδμη   
The integral gain used in online training scheme is chosen 

as KI1= 0.015 for NSMC1 and KI2 =0.02 for NSMC2. The 
Figure 3.4 shows the system outputs of two subsystems.  
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Figure 3.3: Multivariable Neuro-Sliding Mode Control Structure 

0 1 2 3 4 5
0

0.5
1

Time [s]

v 
[m

/s
]

0 1 2 3 4 5
0

0.5
1

Time [s]

w
 [r

ad
/s

]

Nominal
Upper
Lower

 
Figure 3.4: Step responses of two velocity loops obtained by MNSMC 
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IV. REALTIME EXPERIMENTAL RESULTS AND DISCUSSIONS 
The algorithms described in the previous sections are 

implemented in ANSI C LabWindow CVI 8.5 with 20 (ms) 
sampling time. Two real-time experiments are carried out to 
verify the design. The results obtained by Multivariable 
Neuro-Sliding Mode Control (MNSMC) are compared to 
that obtained by Multivariable Model Predictive Control 
(MMPC). 

Experiment 1: This experiment tests the effectiveness of 
the proposed strategy. By exciting input signal of one 
subsystem while keeping other subsystem input at zero, 
Figure 4.1 shows the system outputs obtained by MMPC and 
that obtained by MNSMC method. Clearly, compared to 
MMPC method elaborate performance is obtained by 
MNSMC. Moreover, interactions between two subsystems 
are eliminated by pre-compensator D(s).  

Experiment 2: This real-time experiment tests the 
robustness of the controlled system under system 
uncertainties and external disturbances in two sub-tasks: 
square tracking and line tracing. Each subtask experiment is 
conducted in different conditions.  
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Figure 4.1: System outputs obtained: MMPC (a), MNSMC (b)  
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Figure 4.2: Path-following control: square tracking (a), line tracking (b)  
 

In line tracing task a person weighted 46 kg seats on the 
wheelchair and it runs on wooden surface while in square 
tracking task 70 kg person seats on the wheelchair and it 
runs on cement surface. During experiment, a person seated 
on the wheelchair tries to move oneself in order to change 
the centre of gravity of the system. The results in this 
experiment in Figure 4.2 confirm that system performance is 
still guaranteed regardless different subtasks are conducted 
in different conditions, and better results are obtained by 
MNSMC compared to MMPC method. This is because two 
NSMCs are trained in the offline training scheme to attain 
optimal performance and are trained online to adapt to the 
change of external conditions so that they can reject any 
unwanted uncertainties and external disturbances.     

V. CONCLUSION 
In this paper, we have proposed a robust systematic 

multivariable strategy for a class of multivariable systems. 
Two design stages are required in this approach. First, the 
multivariable system is decoupled into series of scalar 
subsystems by using a pre-compensator. Then two advanced 
control strategies are presented and compared in the control 
design stage for each scalar system. One of these control 
strategies is MPC, which is successfully applied in linear 
systems. Other strategy is NSMC, which can provide system 
robustness by its online adaptation ability. Real-time 
experiments on a powered wheelchair system are conducted 
to compare system performance attained by two control 
strategies. The results show that it is possible to combine 
decoupling technique and advanced control strategy to 
provide robust strategy for a multivariable control problem. 
It also confirms that optimal performance and robustness of 
a class of multivariable systems under system uncertainties 
and external disturbances can indeed be achieved by the 
combination of triangularization technique and NSMC 
strategy, known as MNSMC.   
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