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Longitudinal Strain Estimation in Incompressible Cylindrical Tissues
from Magnetic Resonance Imaging
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Abstract—1In this paper, we present a simple approach
for estimating the average longitudinal strains from models
reconstructed from medical images. It can be used for many
incompressible generalized cylindrical tissues, such as tendons,
ligaments, and fusiform muscles; the major deformation direc-
tions of these soft tissues are along the longitudinal axes. The
method is especially useful when pre- and post-deformation
tissue correspondences are difficult to establish directly from
images for various reasons, such as insufficient image resolu-
tion, homogenous image intensity, and noise. Incompressibility,
which is accepted as a good approximation for soft tissues, is
exploited as a constraint on the tissue deformation. Experiments
with Magnetic Resonance Imaging (MRI) of tissue phantoms
and computer simulations show that the method is accurate and
practical even in the presence of noise. Finally, we demonstrate
the usefulness of our approach on studying extraocular muscle
deformation.

I. INTRODUCTION

Determining deformation properties of soft tissues is a
fundamental problem in biomechanics. Realistic biomechan-
ical modeling and simulation requires both reconstruction
of anatomical structures and estimation of deformation. For
instance, in modeling the mechanics of extraocular muscles,
we need to estimate the shortening of the muscles from MR
images acquired in multiple gazes, even though the image
resolution is not sufficient to identify point correspondences
between images. However, accurate and efficient deformation
estimation in vivo is challenging due to many reasons.

Different imaging modalities have been employed for
estimating material properties by tracking tissue deformation;
we list a few representatives here. Ultrasound has been
used widely for measuring strains [1], [2], because of its
noninvasive feature and real time capability. In particular,
ultrasound elastography has been developed to measure the
tissue elasticities, leading to important applications including
lesion detection in breasts and prostates. MRI [3] and fluoro-
scopic imaging [4] have also been used for strain estimation.
Most of these approaches compute the material displacement
by finding tissue correspondences in two images. However,
it is not always possible to establish correspondences due
to poor data resolution, homogeneous intensity across the
material, smooth shape deformation, etc.

One approach to solve the correspondence problem is the
MRI tagging technique, which introduces tags in the imaging
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process to capture the underlying tissue movement. Tagged
MRI has been used to estimate myocardial strains [5], [6],
hamstring strains [7], and extraocular muscle deformation
[8]. Magnetic Resonance FElastography (MRE) combines
MRI with low-frequency sound waves and is able to measure
tissue viscoelasticity [9], [10], [11]. Cine phase-contrast MRI
has also been proven to be effective in tracking skeletal mus-
cle motion [12], [13]. Applications using these techniques
are limited by their availability and time efficiency. They are
mostly restricted to two dimensional strains, assuming that
there is no off-plane tissue deformation.

Another way is to introduce physical markers that are
easier to track. Dye lines of elastin stain were applied on the
gastrocnemius tendon-muscle unit for measuring longitudinal
strain [14]. Markers have been attached to the surfaces of
tendon and muscle [15], [16], [4] or implanted in extraocular
muscles [17]. The surface markers are limited to the study of
cadaver tissues or superficial live tissues. The bead implant
cannot be used on human subjects.

We propose a simple but effective algorithm for measuring
the longitudinal strain of an object when the images are
inadequate for providing enough information for the object
interior. Usually the boundaries are relatively easy to ex-
tract because of the contrast between different tissues. Our
goal is to compute the average 1D strain field along the
major deformation axis, given only the tissue boundaries of
generalized cylindrical shape. A generalized cylinder (GC)
is a cylindrical object resulting from sweeping a possibly
varying cross section along an arbitrary space curve [18].
It does not have to be axisymmetric since the cross sections
can be arbitrary too, which makes GC a flexible and realistic
geometric representation of muscles and tendons.

We focus on the longitudinal strain, which is one of the
most important parameters in measuring material properties
of ligaments and tendons [14], [16], [4]. The key point of
our method is that most soft tissues are incompressible to a
very good approximation [1], [15], [19]. In other words, the
volume of the tissue material is nearly constant in different
deformed configurations. By using this physical property, we
can compute longitudinal strains by finding subvolume-to-
subvolume correspondences instead of discrete point-to-point
correspondences.

In Section II, we first introduce our methodology by using
a 2D synthetic example for the simplicity of conveying the
idea. The approach is directly applicable to three-dimensions.
To validate the effectiveness of the approach, we apply it to
real MR images of a rubber tissue phantom modeling tendon
(see Section III-A). Predicted longitudinal deformation is
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compared with the ground truth given by the markers inside
the phantom. Further evaluation is performed by sensitivity
analysis of simulated data in Section III-B. Finally, we show
the application of our method on extraocular muscles(see
Section III-C).

II. METHODS

For ease of illustration, we describe our algorithm using a
simulated 2D muscle-like elastic object. The method applies
directly to any generalized cylinder; we demonstrate the
method with 3D MRI data in Section III-A.

Figure 1(a) shows a 2D object in the steady state (in red)
and its deformed shape (in blue). The deformed boundary is
a scaled version of the reflection of its steady shape in the x
direction. This simple setup guarantees that the total volume
is preserved. Given only the boundaries, we will show how
our algorithm computes the strain field along the z-axis. In
general, the boundary does not have to be as smooth as this
example and the axis can be curved (see Section III).
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Fig. 1. (a) A 2D example showing an object before and after deformation.
(b) The cumulative volume function and the segments from projection.

The whole area (volume) is discretized into equal area
(volume) segments along the x-axis. The cumulative volume
function over x (shown as a blue curve in Figure 1(b)) is
first computed. A finite difference approximation is used to
calculate the volume,

N-1
Viotal = Y _ (@i1 — i) (lig1 + 1) /2, (1)
i=1

where [; is the length (area in 3D) of the vertical section
at * = x; and N is the number of samples. Then the
total volume along the vertical volume-axis is uniformly
divided (shown as the cyan line segments in Figure 1(b)).
The magenta lines in Figure 2(a)) show the projection of
equal volume partitions of the z-volume function onto the
z-axis. The accuracy of the uniform partition depends on
the number of segments. Figure 2(a) shows the 20 segments
before and after deformation.

All segments have approximately the same volume,
A%efore = AVvu,fte?" = V;Sotal/ZO' Under the assump-
tion of uniform stress and strain on the cross sections,
each volume before deformation can be associated with
one afterwards, following the sequential order along the
z-axis. Instead of tracking point-to-point correspondences,
1D volume-to-volume correspondences are established using

incompressibility. Figure 2(a) shows the segments and their
correspondences.
The longitudinal strain of each subvolume is computed as

st = i 2)
where w’ and w? are the weighted average widths of the i*"
subvolume before and after deformation. Figure 2(b) shows
the estimated strain of the above example. The green curve
is the spline interpolation of the raw strain field computed
at the centers of the segments (shown as yellow markers).
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Fig. 2. (a) 20 segments are computed for each state. Volume correspon-

dences are shown by the green displacement arrows between the centers of
two corresponding subvolumes. (b) Estimated longitudinal strains are shown
as the green curve.

III. RESULTS

We evaluate our method using both real MR image data
from a 3D tissue phantom (Section III-A), and computer
simulation or sensitivity analysis (Section III-B). We then
demonstrate the application of the approach on estimating
deformation of extraocular muscles (EOMs) in Section III-
C.

A. 3D Phantom Validation

In order to test the applicability of this approach in real
applications, evaluation is first performed on real MR images
of a rubber phantom mimicking generalized cylindrical soft
tissues. MR imaging was used since it is widely used for
imaging human subjects in vivo.

1) Experiment Design: The tissue phantoms were made
from silicone rubber (Smooth-On, Easton, PA) embedded
with glass beads (BioSpec, Bartlesville, OK). MR images of
the phantoms at different stretched states were acquired from
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a Philips 3.0 Tesla MRI scanner. We compare the results of
our algorithm to the ground truth obtained by tracking the
displacement of the glass beads.

Figure 3(a) shows two rubber phantoms glued to two fiber
glass boards in a MR compatible box, viewed from the
top. The box stabilizes the phantoms in different stretching
states. At the rest state, each phantom is about 83.5mm/(L) x
25mm (W) x 18mm(H ). The upper phantom is made of sili-
cone rubber Ecoflex’™ with hardness 00-30A and the lower
one is from Dragon Skin?* with Shore durometer hardness
10A. About 40 solid glass beads (1mm in diameter) were
scattered inside the phantom. The beads appear dark in the
images due to their MRI invisibility, while Silicone rubbers
appear bright. Such nice contrast enables easy tracking of
the bead locations.

2) Experiment Results: T1 weighted gradient echo 3D
MR images were acquired from a Philips Achieva 3.0 Tesla
MRI scanner in the MRI Research Centre in the University
of British Columbia. The scan matrix is 400 x 200 and the
voxel size of the isotropic 3D image data is 0.5mm. 60
coronal images were scanned in each elongation state. Figure
3 shows pictures of the phantoms at different elongation
states as well as the corresponding MR images. The amount
of each elongation was determined by the spacing of the
vertical slots that supported the phantom. In the rest of the
paper, we will mainly discuss the results from the Ecoflex” !
phantom due to space limit. From our data analysis, Dragon
Skin”™ performs similarly to Ecoflex”™.

A threshold segmentation is applied to the reconstructed
axial images (thickness 0.5mm); the cross sectional areas
are estimated from the segmented areas. The most stretched
state has the maximal volume loss (about 1.22%) compared
to the reference state, which is negligible. The approximate
volume preservation assumption holds for the phantom.

Glass beads embedded in the phantoms are identified and
their centers of mass are used as their 3D locations. Our
approach is first validated by computing the error between
the predicted marker location and the actual location. Figure
4 plots the errors of all the markers in three elongation states.
Notice that the errors are all bounded by the scan resolution
0.5mm, which proves the accuracy of the method.

We also compare the estimated longitudinal strain of the
rubber phantom to the actual strain interpolated from the
measured marker displacements. We use the markers that
are at least 2mm apart in the rest state such that errors due
to imaging resolution and marker size can be minimized.
Figure 5 shows the strain comparison in three elongated
configurations. Our estimated strains well approximate the
true strains.

B. Simulated Sensitivity Analysis

In the sensitivity analysis, the input is perturbed by either
adding errors to the boundary measurement or violating the
basic assumptions by a small amount. The method described
in Section II is applied on the perturbed input and errors are
analyzed with respect to the noise.

(@ ()

Fig. 3. Photos and the corresponding MR images of the phantoms
that were (a)(b) at the reference state; (c)(d) elongated by 1.11; (e)(f)
elongated by 1.22; (g)(h) elongated by 1.33. The dimensions of the box
are 135mm(L) x 75(W) x TO(H). The lengths of the phantom in the
four configurations are 83.5mm, 92.7mm, 101.6mm, and 111.2mm
respectively.
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Fig. 4. (a) Absolute axial displacement error in three elongation configu-

rations.
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Fig. 5. Comparison of strains estimated from our approach and interpolated
from actual marker displacements.

1) Shearing: In this experiment, we assume that the tissue
shears to some extent (see Figure 6 for an example). A
simple 2D shearing model is considered. Mathematically,
each point (z,y) in the object moves to (z,y’), where
' =x +ytana,y =y. a is the shear angle.

Obviously, volume is preserved. Both the x-strain and y-
strain are zero. If we apply our method, we will not get
exactly zero strain along the x-axis because of the geometric
distortion perpendicular to the xz-axis. Figure 6 shows the
estimated strain from an example with 20 degree shearing.

angle = 20(deg); n = 20; maxS = 0.0085; meanS = 0.0040
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Fig. 6. Original tissue in blue is sheared by 20 degrees and becomes the

object in red. Estimated strains are shown as the green curve. Note that
the maximum strain is very small (less than 0.01); the vertical scale is
magnified to make the small variation in strain visible.

Strain fields at different shearing angles are computed. The
magnitude of the strain error is studied, which is just the
absolute value of the estimated strain because |s* — s}| =
|s'—0| = |s?|, where s is the strain of the i*" subvolume and
sb is the true longitudinal strain under shear. Figure 7 shows
the error statistics max(|s’|) and average(|s’|) at 20 different
shearing angles. As expected, the strain error increases with
the shearing angles. The maximum error is only about 0.015,
even with shearing of 26 degrees.

2) Additive Gaussian noise: Next, we consider the cases
in which the boundary measurement is imperfect. Here the
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Fig. 7. The statistics of strain errors given different shearing angles.

boundary is assumed to be corrupted by additive Gaussian
noise. Thirteen noise levels are tested. For every level, the
following process is repeated 100 times and the average is
taken as the error measurement. Random Gaussian noise is
generated and added to the ground truth. Then the strain
fields, sp from the original data and s from the noisy data,
are estimated respectively. The maximum and average of the
strain error magnitude, max(|s® — s§|) and average(|s’ —
si|), are studied.

Figure 8 shows the statistics of the strain error. The error
increases almost linearly with the noise variance. Even with
the largest perturbation, the maximum error is still below
0.01. We conclude that our approach is robust against this
kind of additive noise.
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Fig. 8. The maximum and average strain errors given different Gaussian

noise variances.

C. Deformation of Extraocular Muscles from MRI

Understanding how the extraocular muscles (EOMs) de-
form in vivo as a function of gaze is important in studying the
physiological and mechanical properties of the oculomotor
plant. However, measuring EOM deformation is challenging.
Miller et al. [17] implanted gold beads in the orbits of
monkeys and tracked these markers using CT imaging.
Clearly, this technique cannot be used on human subjects.
Motion-encoded MRI has recently been used to assess EOM
motion [8]. However, limited by the imaging resolution and
imaging dimensions, local deformation along the EOM axis
has not been available [8]. Our method solves this problem
by computing longitudinal strains from models reconstructed
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from MRI instead of from images themselves. We see
our approach as complementary to the above techniques
because of its simplicity and usefulness on widely available
conventional MRI from human subjects.

Applying the method described above, we estimated the
longitudinal strains of the horizontal EOMs in adduction
and abduction using models reconstructed from MR images
of human subjects. The calculated strains were applied to
generate realistic EOM models in a physically consistent
registration framework. Constrained by the estimated EOM
deformation, the resulting models are more anatomically
accurate and physically meaningful. Details can be found
in [21].

IV. DISCUSSION

We present a simple and effective method for estimating
longitudinal strains in musculotendons and other general-
ized cylinders, in cases where local correspondences are
hard to find. The underlying idea is to find subvolume-to-
subvolume correspondences utilizing the incompressibility of
soft tissues. This approach is very practical because shapes
of soft tissues can be obtained either from medical images
or recently developed laser reflectance system for measuring
cross sections [22].

Simulated sensitivity analysis shows that with moderate
noise, the algorithm produces small errors. Validation on
MRI of a rubber phantom further proves the accuracy of
our approach. The method has been applied in studying
extraocular muscle deformation.

The proposed method is limited to one-dimensional longi-
tudinal strains and lumped in the transverse directions. It is
designed for tendons, ligaments, and fusiform muscles, such
as the biceps brachii and extraocular muscles, in which fibers
are arranged nearly parallel to each other. It cannot accurately
predict strains from muscles with more complex architec-
tures. In future work, we plan to estimate strains from more
general deformation with shearing and non-homogeneous
tissue properties. If few sparse correspondences are available,
we would also like to exploit the incompressibility constraint
to deal with more complex structures.
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