
  

 

Abstract— In this paper we present a comparative 
behavioral analysis of spatial cognition in rats and robots by 
contrasting a similar goal-oriented task in a cyclical maze, 
where a computational system-level model of rat spatial 
cognition is used integrating kinesthetic and visual information 
to produce a cognitive map of the environment and drive robot 
experimentation. A discussion of experiments in rats and 
robots is presented contrasting learning latency while 
characterizing behavioral procedures such as body rotations 
during navigation and election of routes to the goal. 

I. INTRODUCTION 

VER the past months we have been identifying the 
neural mechanisms underlying rats’ spatial cognition 

system in order to computationally model abilities such as 
the generation of the cognitive map, learning and unlearning 
of goal locations, and map exploitation during navigation to 
goal locations from any given point of departure. Taking 
inspiration from rat’s hippocampus function, several 
computational models implemented on robots have been 
proposed such as [1]–[5]. The main distinctive aspects of 
our approach include: (i) generation of a holistic 
topological-metric map, (ii) modeling of the rat’s unlearning 
ability, (iii) modeling of the interaction between the 
hippocampus and the striatum, (iv) map exploitation process 
to enable goal-directed navigation, and (v) validation of our 
robotic architecture not limited to test well-known spatial 
tasks performed with rats, but also by designing and 
implementing new experiments with rats. Refer to [6] for 
further detail on the comparative analysis between our 
model and the abovementioned approaches. 

To evaluate the model we have developed both computer 
simulations and mobile robot experimentations. Tasks 
previously evaluated include learning and unlearning of 
classical spatial reversal behaviors with normal and 
hippocampus-lesioned rats in a T-maze and in an 8-arm 
radial maze as carried out by O’Keefe [7]. We describe 
corresponding results showing a behavioral similarity 
between robots and rats in [6]. We also experimented with 
robots using a classical goal-oriented navigation experiment 
inspired in Morris [8], where we employed multiple non-
cyclical T-mazes surrounded by landmarks. We describe 
corresponding experiments and results in [9] including 
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modification to landmark configurations after having trained 
the robot to find the goal. The current paper extends this 
work by evaluating the robot’s behavior while solving a 
spatial task within a cyclical maze in terms of place 
recognition and goal-oriented navigation against the results 
derived from our experiments with rats solving the same 
spatial task in a similar maze.  

The following sections present the bio-inspired spatial 
cognition model, as well as the experiments with animals 
and robots solving the spatial task in the cyclical maze, and 
a comparative behavioral analysis of the results obtained. 

II. A ROBOTIC MODEL OF RAT SPATIAL COGNITION 

The model comprises distinct functional modules shown 
in Fig. 1 that capture some properties of rat brain structures 
involved in the spatial cognition system. A detailed 
mathematical depiction of each module is presented in [6]. 

Motivation module, related to the rat’s lateral 
hypothalamus [10], computes the immediate reward the 
robot gets by the presence of goals (r). 

Kinesthetic Processing module, involving the 
participation of the posterior parietal cortex (PPC) [11] and 
the retrosplenial cortex (RC) [12], represents the updated 
position of the robot’s point of departure each time the robot 
moves in relation to its current position through a dynamic 
remapping perceptual schema (DR), and produces groups of 
neurons that respond to specific kinesthetic information 
patterns (PI) due to the use of Hebbian learning [13]. 

Landmarks Processing module, associated with the 
entorhinal cortex (EC) [2], encodes landmark-related spatial 
positioning in landmark perceptual schemes (LPS), 
generates landmarks information patterns, and integrates 
them into a single pattern representing the egocentric view 
from the robot (LP). 

Affordances Processing module attributes to PPC [14] the 
generation of the affordances perceptual schema (APS) 
encoding possible turns the robot can perform at any given 
time being at a specific location and orientation. 

Place Representation module corresponds to the rat’s 
hippocampus. It comprises a place cell layer (PCL) with 
neurons resembling pyramidal cells (place cells) found in 
hippocampal substructures CA3 and CA1 [15] responding to 
the combination of kinesthetic (PI) and visual cues (LP) 
information [16], and a world graph layer (WGL) 
corresponding to the prelimbic cortex [17], which associates 
activation fields (place fields) [15] of neurons in PCL with a 
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physical area in the environment that is identified 
directionally by the ensemble activity pattern (PC) and 
whose extension is determined by affordances (APS) 
changes sensed by the robot during exploration. WGL stores 
those associations in a spatial representation referred to as 
cognitive map [18], and performs place recognition. The 
activation patterns generated by PCL when the robot is 
oriented to diverse directions are stored in Actor units. Thus, 
every node in the map (a place) can be connected to several 
Actor units (different views), one for each direction, and 
every connection is associated with a weight (representing 
the expectation of getting a reward when orienting to the 
particular Actor unit direction at the current location), and 
an eligibility trace (marking the connection as eligible to be 
reinforced later in time). In this way, Actor units compete to 
select the next moving direction from the current location 
that allows the robot to get the greatest reward, thus WGL 
analyzes Actor weights to obtain the biggest ones (EX) and 
their corresponding directions (DX). 

 
Fig. 1. The modules of the rat spatial cognition model and their interaction. 
Glossary: LH – Lateral Hypothalamus; RC – Retrosplenial Cortex; EC – 
Entorhinal Cortex; VTA – Ventral Tegmental Area; VS – Ventral Striatum; 
NA – Nucleus Accumbens; PLC – Prelimbic Cortex. Inputs/Outputs: r= 
primary reinforcement; sr= secondary reinforcement; r̂ = effective 
reinforcement; DR= dynamic remapping perceptual schema; LPS= 
landmark perceptual schema; APS= affordances perceptual schema; PI= 
kinesthetic information pattern; LP= landmarks information pattern; PC= 
place information pattern; EX= expectations of maximum reward and their 
corresponding directions (DX); DIR= next robot direction; ROT= robot 
rotation; DIS= next robot moving displacement. 
 

Learning module is related to dopaminergic neurons in 
the ventral tegmental area and to ventral striatum processing 
reward information [19]. Houk et al. [20] proposed that the 
striatum implements an Actor-Critic architecture [21]. In our 
model, an Adaptive Critic predicts reward values of any 
given place in the environment and produces the error signal 

( r̂ ) that allows to adapt reward expectations associated to 
robot different motor actions represented by means of a 
number of Actor units. Additionally, to enable goal-directed 
navigation, a backward reinforcement method is 
implemented, where the eligibility traces of Actor units are 
updated in the direction of the arcs connecting the nodes in 
the path followed by the robot. This strategy is based on the 
goal gradient hypothesis [22], according to which the 
reinforcement effect is the most at the goal location and 
diminishes progressively as the animal moves backward 
through any given maze. 

Action Selection module computes the motor outputs of 
the model (DIR, ROT, DIS). Motion is determined by 
considering the current APS, the selection of a random 
rotation between possible affordances, the curiosity to 
execute rotations not yet explored, and the expectations of 
maximum reward (EX, DX). 

III. RAT AND ROBOT EXPERIMENTATION 

We used two groups composed of three male rats and 
three robots respectively to carry out spatial tasks in mazes 
surrounded by four geometrical figures representing 
allocentric cues or landmarks as shown in Fig. 2. 

In order to motivate the animals to learn the task, the 
consumption of water was prohibited during the prior 24 
hours. The tip of a water dispenser was placed at the goal 
location to provide sweet water to rats as reward. During the 
experiment, rats and robots pass through three phases: 
habituation, training, and testing. 

 
Fig. 2. Top view of cyclical mazes employed in the experiment with rats 
(left) and robots (right). Landmarks L1, L2, L3 and L4 are illustrated, as 
well as locations TD, D1, D2, D3, D4, and the goal location. 

A. Habituation Procedure 

The task begins with a habituation session, where the 
animal and the robot are independently placed in the maze 
and allowed to explore it freely from location TD (Fig. 2) 
until reaching the goal location. No reward is provided 
during this phase, thus rat and robot actions are determined 
by curiosity and randomness. As a result of habituation, the 
robot builds a cognitive map of the maze including nodes to 
represent the explored locations, and Actor units associated 
with different directions in which they were explored. 

B. Training Procedure 

During training, reward is provided to rats and robots at 
the goal location of the maze. At the beginning of every 
training trial, the subject is placed at location TD being 
oriented north, and the trial consists on exploring the maze 
until reaching the target. The subject is then removed from 
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the maze. Robot exploration is interrupted if it spends more 
than 600 sec without reaching the goal. 

The robot training begins from the cognitive map 
previously generated, where it recognizes all locations 
explored in same directions during habituation, and adds 
new nodes when it visits unexplored locations and 
experiments new orientations at explored locations. 

Each rat daily training session included 9 trials, with each 
trial ending with the rat reaching the target for a total of 17 
sessions, whereas robot training phase consisted of one 
session including 20 trials. Latencies and routes followed by 
animals and robots in locating the target were registered. 
Fig. 3 contrasts the average latency of arrival to the goal 
considering the average performance of all three rats and 
three robots. 

 
Fig. 3. Average latency of arrival to the goal per training session/trial during 
the spatial task in the cyclical maze, considering the average performance of 
all rats/robots and indicating the corresponding dispersion level. 

C. Testing Procedure 

In order to evaluate rat and robot ability to reach the 
target after having concluded the training procedure, we 
tested trajectories during 12 trials with subjects liberated 
three times from four different locations in the maze: D1, 
D2, D3, D4 (Fig. 2), pointing to four different orientations: 
north, north, east, and south, respectively. 

In every testing trial, the subject is placed at the 
corresponding location and orientation, and the trial consists 
on exploring the maze freely until reaching the goal. The 
subject is then removed from the maze. Latencies and routes 
followed by subjects in locating the target were registered as 
exemplifying by Fig. 4 and 5. Each robot exploited the 
cognitive map built during habituation and maintained 
during training in order to reach the target successfully. 
During some of the testing trials, robots still modified their 
spatial maps by adding new nodes to represent unexplored 
locations. Fig. 6 illustrates nodes recognized by one of the 
robots within its spatial map during tests, and new nodes 
derived from additions. 

 
Fig. 4. Examples of routes followed by rats in locating the water during tests 
from different departure locations (D1, D2, D3, D4). Lines inside each maze 
illustrate three different routes and the average latency is shown below it. 
 

 
Fig. 5. Routes followed by robot #2 while locating the goal during tests 
departing from locations D1, D2, D3, D4. Lines inside each maze illustrate 
routes recorded from three trials and the average latency of arrival is shown 
below it. When the robot followed the same route in those three trails, the 
corresponding maze shows only one line. Small arrows over the routes 
represent hesitations executed by the robot in deciding its next motor action. 

IV. COMPARATIVE ANALYSIS OF EXPERIMENTAL RESULTS 

As a result of training, the latency of arrival to the target 
location decreases progressively until stabilizing in both rats 
and robots (Fig. 3), and both subjects were able to learn the 
shortest route to the goal from the initial fixed location. 

It is possible to characterize comparatively the 
performance of rats and robots during tests by analyzing 
behavioral procedures such as errors associated with the 
election of a non-optimal route to the goal, and the number 
of body rotations during navigation. As depicted by Fig. 
7(a), the average number of errors is less than one. All 
robots followed optimal routes to the goal from locations D1 
and D2. Some of the robots selected non-optimal paths when 
departing from D3 and D4, since these locations were 
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unexplored or barely explored during training. Therefore, 
those robots navigated randomly until recognizing a place 
previously learned, typically belonging to the shortest path 
to the goal, and followed the rest of that route. On the other 
hand, as shown in Fig. 7(b), the average number of body 
rotations in rats when departing from any given test location 
exceeds slightly the number of robot body rotations, 
partially indicating that rats took longer to reach the target in 
contrast to robots. 

 
Fig. 6. Spatial map produced by robot #2 as a result of tests carried out in 
the spatial task within the cyclical maze. Black nodes indicate existing 
nodes recognized by the robot or new nodes created by it. White nodes are 
existing nodes not employed by the robot during tests. Nodes are numbered 
in order of creation, and arcs between nodes are labeled with the robot 
allocentric direction when it moved from one node to the next one. 

V. CONCLUSIONS AND DISCUSSION 

The aim of the work presented in this paper is to provide 
our model and robotic architecture to neurobiologists and 
neuroethologists as an alternative platform to study, analyze 
and predict rat spatial cognition based behaviors. 

Results derived from the comparative experimental study 
with rats and robots discussed throughout the paper allow us 
to validate our robotic model in terms of performance 
match. Both, rats and robots, reached successfully the 
learning criterion during the training process of the spatial 
task within the cyclical maze. When rats were tested to find 
the goal location in this relatively complex maze departing 
from different locations, they did not always show an 
optimal performance following the shortest route, and this 
behavior was also exhibited by robots during tests. 

We plan to extend our robotic model in the following 
directions: (i) the function of head-direction cells providing 
information on the rats’ rotation magnitude and movement 
direction and supplying to the hippocampal module; (ii) the 
adaptation of place fields distribution by increasing their 
density in the presence of relevant elements in a given 
navigational task; and (iii) the functional differences 
between hippocampal substructures CA1, CA3 and DG 
relative to their capabilities of pattern completion and 
pattern separation in conditions where environmental 
changes promote new navigational behaviors. 

 
Fig. 7. Graphical comparison between behavioral procedures monitored 
from rats and robots during tests. Above: Average number of errors 
associated with following non-optimal paths to the goal location. Below: 
Average body rotations during navigation within the maze. 
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