
  

  

Abstract— Traditionally, modeling of neurobiological 
systems has involved development of computer-based 
simulations. As opposed to physical experimentation, 
simulations tend to over-simplify environmental conditions. 
Yet, in many cases such environmental conditions are critical to 
experiment outcome. In the case of animal behavior, 
simulation-only arenas can serve as a preliminary platform for 
model experimentation. Realistic physical environments are 
required for final evaluation of model correctness. In this paper 
we present our work with physical robots as testbed for animal 
behavior experimentation under realistic environmental 
conditions. 

I. INTRODUCTION 
N important question in the behavioral and brain 
sciences community is “how should biological behavior 

be modeled”. Webb [9] discusses a methodology using 
neuroethological models as basis for biological behavior 
modeling by building physical robots. Neuroethological 
robotics is different from the more traditional behavior-
based robotics [3] in that neural models are incorporated as 
basis for behavior. The reason for doing robot 
experimentation as opposed to simulation-only is that 
models tend to be oversimplified during simulation while 
embodiment provides a much richer and realistic interaction 
environment. Yet, simulations play an important role in 
model development as preliminary assumptions are 
evaluated although final evaluation needs to take place 
under the embodied environment. Both, during initial model 
development and later during robot testing it is necessary to 
perform modifications to the model architecture. This can be 
easily achieved with an embedded robotic architecture 
connected to a remote computer in a wireless fashion. The 
remote computer can perform time-consuming tasks, e.g. 
neural and image processing. Thus, the robot can effectively 
be used as a sensory-motor device sending input to the 
remote computer while receiving motor commands as 
feedback. Depending on the robotic hardware configuration 
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there may be additional local robot processing, such as 
image pre-processing or simpler local robot tasks. 

In section II we describe the general environment for 
multi-level model development. Section III presents the 
embedded robotic architecture for studying biologically-
inspired modeling, whereas section IV describes 
experiments developed using this architecture. Section V 
presents our conclusions. 

II. BIOLOGICALLY-INSPIRED ROBOTS 
The study of biologically-inspired robotics comprises a 

cycle of biological experimentation, computational modeling 
and robotics experimentation as depicted in Fig. 1. This 
cycle serves as framework for the study of the underlying 
neural mechanisms responsible for animal behavior. 

Examples of biologically inspired robot models include 
frogs and toads [10], praying mantis [8], and rats [5, 7] 
among others. To address the underlying complexity in 
building neuroethological robotic systems we distinguish 
between behavior and neural structure modeling [11]. At the 
behavioral level, neuroethological data from living animals 
is gathered to generate single and multi-animal systems to 
study the relationship between a living organism and its 
environment, giving emphasis to aspects such as cooperation 
and competition between them. Examples of behavioral 
models include the frog and toad prey acquisition and 
predator avoidance models [10], and the praying mantis 
prey-predator model [4]. Behaviors are described in terms of 
perceptual and motor schemas representing a distributed 
model for action-perception control [1]. Behaviors, and their 
corresponding schemas, are processed via the Abstract 
Simulation Language ASL [12]. At the structural level, 
neuroanatomical and neurophysiological data are used to 
generate perceptual and motor neural network models 
corresponding to schemas developed at the behavioral level. 
Examples of neural network models are spatial cognition 
[6], and the prey acquisition and predator avoidance [10]. 
Neural networks are processed via the Neural Simulation 
Language NSL [13]. When available, behavior schemas are 
refined into neural schemas by finding direct mappings to 
brain regions [11]. 
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Fig. 1. Framework for the study of living organisms through cycles of biological experimentation, computational modeling, and robotics experimentation. 

III. EMBEDDED DISTRIBUTED ARCHITECTURE 
One of the main concerns with neuroethological robot 

experimentation is the expensive nature of neural 
processing, which is exacerbated by the fact that a 
comprehensive neuroethological model may include 
multiple neural modules involving multiple brain regions 
[2]. In trying to achieve real-time performance while 
experimenting with neuroethological robotic systems, we 
have designed the MIRO embedded distributed system [14]. 
Under the MIRO architecture: (i) time-consuming 
processing is done in the remote computational system, 
while (ii) sensory input and motor output are carried out in 
the sensory-motor robot system. 

IV. EXPERIMENTAL APPLICATION OF MIRO 
The MIRO robot architecture has been applied to a 

number of neuroethological models such as prey acquisition 
and predator avoidance in toads, and spatial cognition in 
rats. In Fig. 2 we show a two-level schema diagram for the 
toad’s prey acquisition and predator avoidance model [10]. 
We include a single schema layer describing the different 
behaviors being modeled, primarily prey approach, predator 
avoidance and static object avoidance. Additional schemas 
include visual and tactile input, depth and moving stimulus 
selector (when more than one prey exists), prey, predator 
and static object recognizers together with the four types of 
motor actions: forward , orient, sidestep and backward. At 
the neural level, a number of neural networks are 
incorporated: Retina, Stereo, Maximum Selector, Tectum 
and PreTectum-Thalamus, together with neural motor 
heading maps. 

 
Fig. 2. Toad’s prey-predator visuomotor coordination model architecture with schema and neural level modules. 
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In Fig. 3 we show a two-level schema diagram for the 
rat’s spatial cognition model [6]. At the schema level, 
behaviors being modeled include motivation, kinesthetic, 
landmarks and affordances processing, place representation, 
learning, and action selection. Additional schemas include 
visual and kinesthetic input, as well as internal drives such 
as hunger and thirst, and motor actions such as moving 
forward, direction and body rotation. At the neural level, 
three neural networks are incorporated: Lateral 
Hypothalamus, Striatum and Hippocampus. 

In Fig. 4 we show a typical computation cycle during 
spatial cognition in a maze [14]. Computation initiates with 
image capture from the robot camera sent to the remote 
computational system where image processing is performed 

by computing the number of pixels of every relevant color, 
and determine the possible presence of the goal and 
landmarks. The amounts of colored pixels are used to 
estimate the distance and relative orientation of each visible 
landmark from the robot, and determine possible rotations 
(affordances) the robot can execute from its current location. 
The remote computational system processes then the 
neuroethological model (neural processing) carrying out 
mapping creation/adaptation, place recognition, and learning 
processes. As a result, the model produces motor outputs 
(next robot direction (d), required rotation to point to that 
direction (θ), and moving displacement (m)) that are sent 
back to the robot as navigation control executing rotation 
and translation operations within the maze [6]. 

 
Fig. 3. Schema and neural network architecture for the rat spatial cognition model. 

V. CONCLUSION 
The work described in the paper discusses the challenges 

in experimenting with neuroethological models embedded 
into robotic systems. Simulation-only environments are 
desirable for model development, but final model testing 
requires realistic physical environments that are best tested 
with robots. 

An additional concern with these architectures is the 
expensive nature of neural processing. In order to overcome 
these difficulties, we have developed an embedded 
distributed robotic architecture called MIRO where neural 
networks are remotely processed using the NSL/ASL neural 
simulation system. This architecture has proven quite 
beneficial in terms of processing efficiency, model 
development where a single version is developed for both 
simulated and robotic environment, as well as providing 
real-time robot monitoring and visualization capabilities. 

The MIRO architecture has been used in a number of 

neuroethological experiments involving toad behaviors such 
as prey acquisition and predator avoidance with detouring, 
and rat behaviors such as spatial cognition in several mazes. 

REFERENCES 
[1] Arbib, M.A., Schema Theory, in the Encyclopedia of Artificial 

Intelligence, 2nd Ed., Editor Stuart Shapiro, 2:1427-1443, Wiley, 
1992. 

[2] Arbib, M.A., Erdi, P. and Szentagothai, J., Neural Organization: 
Structure, Function and Dynamics, MIT Press, 1998. 

[3] Arkin, R.C., Behavioral based Robotics, MIT Press, 1998. 
[4] Arkin, R.C., Ali, K., Weitzenfeld, A., and Cervantes-Perez, F., 

Behavior Models of the Praying Mantis as a Basis for Robotic 
Behavior, in Journal of Robotics and Autonomous Systems, 32 (1) pp. 
39-60, Elsevier, 2000. 

[5]  Barrera, A., and Weitzenfeld, A., Computational Modeling of Spatial 
Cognition in Rats and Robotic Experimentation: Goal-Oriented 
Navigation and Place Recognition in Multiple Directions, BioRob 
2008, Oct 19-22, Scottsdale, AZ, USA, 2008. 

[6] Barrera, A., and Weitzenfeld, A., “Biologically-inspired Robot Spatial 
Cognition based on Rat Neurophysiological Studies,” Autonomous 
Robots 25 (1/2): pp. 147-169, Springer, 2008. 

7202



  

[7] Barrera, A., and Weitzenfeld A., Biologically Inspired Neural 
Controller for Robot Learning and Mapping, IJCNN – International 
Joint Conference on Neural Networks, Vancouver, Canada, July 16-
21, 2006. 

[8] Cervantes-Perez, F., Franco, A., Velazquez, S., Lara, N., 1993, A 
Schema Theoretic Approach to Study the 'Chantitlaxia' Behavior in 
the Praying Mantis, Proceeding of the First Workshop on Neural 
Architectures and Distributed AI: From Schema Assemblages to 
Neural Networks, USC, October 19-20, 1993. 

[9] Webb, B., Can robots make good models of biological behaviour?, 
Behavioral and Brain Sciences, 24: 1033-50, Cambridge Press, 2001. 

[10] Weitzenfeld, A., A Prey Catching and Predator Avoidance Neural-
Schema Architecture for Single and Multiple Robots, Journal of 
Intelligent and Robotics Systems, Springer 51(2): 203-233, Feb, 2008. 

[11] Weitzenfeld, A., From Schemas to Neural Networks: A Multi-level 
Modeling Approach to Biologically-Inspired Autonomous Robotic 
Systems, Journal of Robotics and Autonomous Systems, Elsevier, Vol. 
56, No. 2, pp. 177-197, Feb, 2008. 

[12] Weitzenfeld, A., ASL: Hierarchy, Composition, Heterogeneity, and 
Multi-Granularity in Concurrent Object-Oriented Programming, Proc. 
Workshop on Neural Architectures and Distributed AI: From Schema 
Assemblages to Neural Networks, USC, October 19-20, 1993. 

[13] Weitzenfeld, A., Arbib, M., Alexander, A., The Neural Simulation 
Language: A System for Brain Modeling, MIT Press, July 2002. 

[14] Weitzenfeld A., Gutierrez-Nolasco S., and Venkatasubramanian N., 
MIRO: An Embedded Distributed Architecture for Biologically 
inspired Mobile Robots, Proc ICAR-03, 11th International Conference 
on Advanced Robotics, June 30 – July 3, Coimbra, Portugal, 2003. 

Camera 

Image Capture 

Image Processing 

Model Processing 

Model Output 

Navigation Control 

(d, θ, m) 
Robot in a Maze 

REMOTE PC 

 
Fig. 4. Robotic architecture computing cycle during spatial cognition in a maze. An image is captured by the robot camera and sent to the remote 
computational system for image processing. Once the image is processed, mainly color filtering, distances and relative orientations of the goal and each 
visible landmark from the robot, as well as possible rotations (APS) the robot can execute from its current location are sent to the neural processing unit 
where the neuroethological model is computed. The model performs place representation and learning processes. At the end of each cycle, motor output is 
produced (next robot direction (d), required rotation to point to that direction (θ), and moving displacement (m)) and sent back to the robot for navigation 
control. These cycles continue until the robot reaches a specific learning criterion. 
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