
Safety Design for Medical Robots

Peter Kazanzides

Abstract— The use of robots in medicine is increasing, leading
to the call for specific safety standards. This is a challenging
endeavor, however, because the patient must usually be placed
in the robot’s workspace and the medical staff must frequently
interact with the robot. Although specific safety standards for
medical robots do not yet exist, there are several medical
device standards and well-established principles of risk analysis
and safety design that can and should be applied. This paper
presents a tutorial overview of safety design for medical robots,
starting with a discussion of high-level safety requirements,
followed by methods for risk assessment (or hazard analysis)
and a brief discussion of some sample safety strategies.

I. INTRODUCTION

Robots were introduced to the manufacturing floor more
than 40 years ago, and today there are accepted standards
for industrial robot safety, such as ANSI R15.06-1999. In
contrast, robots were first used in surgery about 20 years ago,
and were not widely used in this field until the last decade.
Although there has been prior work in medical robot safety
(for example, see [1], [2], [3], [4], [5], [6]), there is not yet
an accepted standard. This is likely due to the fundamental
differences between the safety requirements for industrial
robots and medical robots [7]. In an industrial setting, safety
systems typically involve gates, pressure-sensitive mats, and
flashing lights – devices designed to keep people out of the
robot’s workspace or to shut down the system if a person
comes too close. This is especially important when the robot
is capable of high speeds or torques. In an industrial robot,
high speeds and torques are desirable because they reduce
the cycle time, thereby increasing the robot’s productivity.
In addition, many industrial robots require super-human
strength to perform their tasks. Unfortunately, these desirable
attributes increase the potential danger to human beings.

In medicine, it is rarely possible to keep the robot away
from people. This is especially true in surgical applications,
where the robot is directly interacting with the patient’s body
and is often working alongside the Operating Room (OR)
staff and within reach of life-sustaining medical equipment.
Thus, we have the situation where people must be in the
workspace of the robot and where one of them (the patient)
is usually anesthetized and cannot escape if the robot misbe-
haves. Furthermore, the robot may be holding a dangerous
instrument, such as a scalpel, and is supposed to actually
injure the patient with this instrument. In this scenario,
robot safety involves keeping the robot under control (no
“robot runaway”), working safety within its environment (not
bumping into the OR staff or other medical equipment), and
“injuring” the patient in precisely the right places.

P. Kazanzides is with the Dept. of Computer Science, Johns Hopkins
University, Baltimore, MD USA pkaz@jhu.edu

Although there are not yet any accepted standards for
medical robot safety, it is neverthless prudent to apply good
engineering design concepts and absolutely necessary to
satisfy regulatory requirements and general medical device
standards such as IEC 60601 and IEC 62304.

II. SAFETY REQUIREMENTS

The first safety consideration is whether the system must
be fail-safe or fault-tolerant. A fail-safe system is allowed
to fail, as long as failure causes it to enter a safe state. In
contrast, a fault-tolerant system must continue to operate
even in the presence of failures. Obviously, it is much easier
to design a fail-safe system than a fault-tolerant system.
Fortunately for medical robot designers, a fail-safe system is
often sufficient because the robot can generally be brought
to a safe state by powering off the motors; the medical
intervention can then be completed via the conventional
(manual) method. Of course, this assumes the existence of
a manual method – as robotics becomes more advanced
and enables surgeries that are not currently possible, it may
become necessary to develop more fault-tolerant systems.

The second consideration is the magnitude of error that
can be tolerated before a safety response is initiated. This is
important because in many cases, a safety violation cannot
be detected until a specified threshold is exceeded. To
illustrate this, consider that most robots consist of multiple
joints, where the position of each joint is set by a feedback
control system; for example, the feedback could consist
of an encoder mounted on the motor shaft (Fig. 1). As
will be discussed in the next section (Risk Assessment),
a “robot runaway” condition could be caused by several
factors, such as an encoder failure or an amplifier failure. A
common method of control (i.e., safety feature) is to place a
maximum value (threshold) on the error between each joint’s
commanded position and its measured (encoder) position.
Due to the nature of feedback control, this error is almost
never zero; thus, the error threshold must be set to some
non-zero value, E (see Fig. 2). Furthermore, most control
systems are digital, with a fixed sampling period ∆T , so
it is possible for the robot to travel Vmax∆T , where Vmax

is the maximum velocity, before the runaway condition is
detected. Finally, the robot has mechanical inertia and cannot
be stopped immediately, leading to an additional travel of
∆Poff . So, the maximum error is given by:

Emax = E + Vmax∆T + ∆Poff (1)

With many current robot systems, it would not be unusual
for Emax to be several millimeters. The question of whether

7208

31st Annual International Conference of the IEEE EMBS
Minneapolis, Minnesota, USA, September 2-6, 2009

978-1-4244-3296-7/09/$25.00 ©2009 IEEE

Control Motors

Encoders

+

-

xd

xa

e u

Fig. 1. Robot joint controller

E Vmax*∆T

∆Poff

Fig. 2. Error analysis

or not this is acceptable depends on the application, so it is
critical to involve domain experts (surgeons) in the safety
design process. In some areas, such as orthopaedic joint
replacement, a rare “glitch” of a few millimeters may be
acceptable even if sub-millimeter accuracy is required for
the overall system. In other areas, such as neurosurgery,
this magnitude of error may not be tolerable. These safety
considerations motivated some researchers to develop passive
robots that are not capable of powered motion [8], [9].

III. RISK ASSESSMENT

Once the general safety parameters have been identified,
it is necessary to perform a Risk Assessment (also called
Hazard Analysis). This is one step of an overall Risk
Management process, as required by ISO 14971 (Application
of risk management to medical devices). Here, the most
common tool is a Failure Modes Effects Analysis (FMEA) or,
better yet, a Failure Modes Effects and Criticality Analysis
(FMECA), both of which are covered by IEC 60812. Hence-
forth, the term FMEA will be used to refer to both methods.
The FMEA is a bottom-up analysis, where the (potential)
system failure is determined for each possible component
failure [10]. Methods of control are devised to mitigate
the hazards associated with these failures. The information
is generally presented in a tabular format. The FMECA
adds the ”criticality” assessment, which consists of three
numerical parameters: the severity (S), occurrence (O), and
detectability (D) of the failure. A risk priority number (RPN)
is computed from the product of these parameters; this de-
termines whether additional methods of control are required.
The FMEA/FMECA is a proactive analysis that should begin
early in the design phase and evolve as hazards are identified
and methods of control are developed. Essentially, it is an
iterative process, starting with an analysis of the risks for the
initial system design, followed by the addition of methods of
control where necessary, and then a re-evaluation of the risks
for the improved system, including risks associated with the
methods of control.

As an illustrative example, consider again the robot joint
controller shown in Fig. 1. The error, e, between the desired
position xd and the measured position xa is computed and
used to determine the control output u that drives the motor.
An encoder failure will cause the system to measure a
persistent steady-state error and therefore continue to drive
the motor to attempt to reduce this error. An amplifier failure
can cause it to apply an arbitrary voltage to the motor that is

independent of the control signal u. The controller will sense
the increasing error and adjust u to attempt to compensate,
but this will have no effect. Finally, a processor failure could
cause the robot motor to continue to move based on the last
commanded voltage or current.

These failure modes are shown in the FMEA presented
in Table I. The result in all of these cases is that the robot
will move until it hits something (typically, the Effect on
System is more descriptive and includes application-specific
information, such as the potential harm to the patient). This
is clearly unacceptable for a surgical robot, so methods
of control are necessary. One obvious solution, shown in
Table I, is to allow the control software to disable the motor
power, via a relay, whenever the error, e, exceeds a specified
threshold. Other methods of control include a redundant
position sensor and a watchdog, which are described further
in the following section.

Another risk assessment method is the Fault Tree Analysis
(FTA), standarized in IEC 61025, which is a top-down
approach that traces each system failure down to individual
components. Thus, the FTA is most useful for after-the-
fact analysis and is often presented graphically, using logic
symbols. Figure 3 depicts an FTA that corresponds to the
FMEA presented in Table I. The bottom row contains the
basic events that, under certain conditions, can cause the
top event (robot runaway) to occur. If the probabilities of
failure are known, these can also be associated with each
link. Note that the graphical representation of the FTA makes
it abundantly clear that, in this case, the top event cannot
occur unless at least two basic events occur (i.e., there is no
single point of failure).

IV. SAFETY DESIGN

This section presents some practical approaches to safety
design for computer-assisted surgery systems, continuing
with the example of the robot joint controller (Fig 1).

The risk analysis (FMEA in Table I and FTA in Fig. 3)
identified three potential hazards, for which three methods
of control were developed – these are illustrated in Fig. 4.
In this example, it is assumed that the robot can always be
brought to a fail-safe state by turning off the motor power.

The redundant encoders with software check addresses
the hazard associated with an encoder failure. Here, the
solution is to introduce a second encoder1 and use software

1although the term encoder is used, any position sensor would suffice.

7209

TABLE I
SAMPLE FAILURE MODES EFFECTS ANALYSIS (FMEA)

Failure Mode Effect on System Cause Method of Control
Incorrect feedback Incorrect robot motion Encoder failure Redundant encoders with software check
Uncontrolled motor current Incorrect robot motion Power amplifier failure Tracking error software check
Robot continues previous motion Incorrect robot motion Processor failure Watchdog to disable power

Patient injury due to
robot runaway

Feedback
failure

Amplifier
failure

Undetected
processor

failure

AND

encoder
failure

Encoder
check
failure

AND

Amp
fails
“On”

Track
check
fails

Processor
failure

AND

Watchdog
failure

OR

Fig. 3. Sample Fault Tree Analysis (FTA)

Control Motors

Encoders

+

-

xd

xa

e u

Watchdog

Disable
power

Encoders

e > t

Compare

Fig. 4. Robot joint controller with safety features

to compare the readings from the two encoders. Practical
considerations dictate the need for a tolerance to account
for factors such as mechanical compliance between the
sensors and differences in sensor resolution and time of data
acquisition. If the software detects a difference between the
encoders that is greater than this threshold, it powers off the
robot motors. Note that although redundant encoders remove
one single point of failure, it is still necessary to avoid a
single point of failure in the implementation. For example,
if both sensors are placed on the motor shaft, they cannot
account for errors in the joint transmission (e.g., due to a
slipped belt).

The tracking error software check was briefly described in
the previous section. It is a check in the control software that
ensures that the error between the commanded position xd

and the measured position xa remains within the specified

threshold, t; otherwise, the software powers off the robot
motors. Again, practical considerations influence the choice
of the threshold, t. Typically, a robot is moved along a
trajectory by periodically making small adjustments to the
desired position xd and relying on the joint controller to
reduce the error (i.e., to “chase” the point). Thus, it is
necessary to set the threshold at least as high as the maximum
incremental change of desired position, which corresponds
to the maximum commanded velocity. This threshold can be
quite large, thereby reducing the effectiveness of this safety
check. One practical solution is to alter the threshold based
on the robot’s current mode of operation. The simplest exam-
ple is to define two thresholds: a “loose” (large) threshold
when the robot is moving and a “tight” (small) threshold
when it is not.

The watchdog to disable power is a well-known method

7210

Motor Power
Supply

Control
Computer

Safety
ComputerWatchdog

Power
Amplifiers

Remote
On/Off

Primary sensors

Safety sensors

Safety Loop

Fig. 5. Implementation of a “safety loop”

that guards against processor and software failures [11].
Generally, it is an external hardware device that must be
periodically refreshed; otherwise, it disables motor power.
Many medical devices rely on software for proper operation
as well as for many safety features (such as the two described
above), so it is critical to assure that the software is actually
executing.

A common theme in the above safety features is the ability
to bring the robot system to a fail-safe state by turning off the
motor power. Obviously, it is best to avoid a single point of
failure in the “Disable Power” block shown in Fig. 4. Thus,
a typical implementation is to use a “safety loop,” such as
the one shown in Fig. 5, which consists of three relays in
series with an emergency power off switch (e.g., the familiar
red mushroom cap). This particular implementation relies on
a motor power supply that only enables power when its two
remote power on terminals are shorted. Thus, motor power
can be turned off by opening any relay or switch in the safety
loop.

As a final point, it is important to realize that a redundant
system is not truly redundant unless individual failures can
be detected. For example, assume in the above example that
when a processor or watchdog detects a safety violation, it
opens its relay and also sends a “power off” message to
its peers, who then respond by opening their relays. This
redundant action is not a bad idea, but it can mask the failure
of up to two relays. If failure of redundant components is not
detected, the result is a system with a single point of failure.
For example, assume that the first two relays in Fig. 5 have
failed in the closed (shorted) state. The system will appear
to operate correctly because the one remaining relay will
disable motor power whenever a safety violation is detected.
That one relay has become a single point of failure.

V. CONCLUSIONS

Although safety considerations are important for both
surgical and industrial robots, the problems and solutions
are different. In an industrial setting, safety frequently in-
volves preventing human beings from entering the robot’s
workspace. In the surgical setting, an anesthetized patient
is inside the workspace and often physically attached to the
robot. Members of the surgical team also enter the workspace
and physically interact with the robot. Thus, safety systems
must prevent injury even in the event of component failures
or human error. The functional requirements for medical

robots (e.g., proximity to patient and medical staff) are
somewhat at odds with the requirement for a high level
of safety. This makes it difficult to develop general safety
standards that can be applied to all types of medical robots.

In the mean time, it is prudent to follow well-known stan-
dards and methods for designing safe medical devices, which
include performing a risk analysis (e.g., FMEA/FMECA)
and identifying and eliminating single points of failure. This
paper presented a brief overview of these topics, with an
illustrative example that considered and addressed certain
hazards associated with a robot joint controller. This work
is certainly not an exhaustive treatise on the subject; in fact,
some critical issues, such as software validation and human
factors design to avoid unsafe usage, have not been addressed
at all. It is hoped that some day these standards will emerge,
so that mankind can safely reap the promised rewards of
medical robotics.

REFERENCES

[1] R. Taylor, et al., “Taming the bull: safety in a precise surgical robot,”
in IEEE Intl. Conf. on Adv. Robotics (ICAR), Pisa, Italy, Jun 1991, pp.
865–870.

[2] P. Cain, P. Kazanzides, J. Zuhars, B. Mittelstadt, and H. Paul, “Safety
considerations in a surgical robot,” in Biomedical Sciences Instrum.
29: Proc. 30th Annual Rocky Mountain Bioengineering Symp., San
Antonio, TX, Apr 1993.

[3] B. Davies, “A discussion of safety issues for medical robots,” in
Computer Integrated Surgery: Technology and Clinical Applications,
R. Taylor, S. Lavallée, G. Burdea, and R. Mösges, Eds. MIT Press,
1995, pp. 287–296.

[4] W. Ng and C. Tan, “On safety enhancements for medical robots,”
Reliability Engin. and System Safety, vol. 54, no. 1, pp. 35–45, 1996.

[5] U. Laible, T. Bürger, and G. Pritschow, “A fail-safe dual channel robot
control for surgery applications,” Safety Science, vol. 42, pp. 423–436,
2004.

[6] K. Fodero, H. H. King, M. J. Lum, C. Bland, J. Rosen, M. Sinanan, and
B. Hannaford, “Control system architecture for a minimally invasive
surgical robot,” in Medicine Meets Virtual Reality (MMVR) 14, Long
Beach, CA, Jan 2006, pp. 157–159.

[7] P. Kazanzides, B. Mittelstadt, J. Zuhars, P. Cain, and H. Paul, “Surgical
and industrial robots: Comparison and case study,” in Proc. 1993 Int.
Robots and Vision Automation Conf., Detroit, MI, Apr 1993.

[8] M. Peshkin, J. Colgate, W. Wannasuphoprasit, C. Moore, R. Gillespie,
and P. Akella, “Cobot architecture,” IEEE Trans. on Robotics and
Automation, vol. 17, no. 4, pp. 377–390, Aug 2001.

[9] O. Schneider and J. Troccaz, “A six-degree-of-freedom passive arm
with dynamic constraints (PADyC) for cardiac surgery applications:
Preliminary experiments,” Computer Aided Surgery, vol. 6, no. 6, pp.
340–351, 2001.

[10] R. E. McDermott, R. J. Mikulak, and M. R. Beauregard, The Basics
of FMEA. Quality Resources, 1996.

[11] R. Kilmer, H. McCain, M. Juberts, and S. Legowik, “Watchdog
safety computer design and implementation,” in RI/SME Robots 8
Conference, Jun 1984.

7211

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order
	Themes and Tracks

