
  

  

Abstract—Walking speed and activity are important 
measures of functional ability in the elderly. Our earlier studies 
have suggested that continuous monitoring may allow us to 
detect changes in walking speed that are also predictive of 
cognitive changes. We evaluated the use of passive infrared 
(PIR) sensors for measuring walking speed in the home on an 
ongoing basis. In comparisons with gait mat estimates (ground 
truth) and the results of a timed walk test (the clinical gold 
standard) in 18 subjects, we found that the clinical measure 
overestimated typical walking speed, and the PIR sensor 
estimations of walking speed were highly correlated to actual 
gait speed. Examination of in-home walking patterns from 
more than 100,000 walking speed samples for these subjects 
suggested that we can accurately assess walking speed in the 
home. We discuss the potential of this approach for continuous 
assessment.  

I. INTRODUCTION 
OBILITY and activity are important measures of 
functional ability in the elderly [1]. However, it is 

becoming increasingly evident that mobility measures may 
also be important independent predictors of the later onset of 
dementia. This has been shown both generally as overall 
slowing (bradykinesia) or loss of trunk and lower extremity 
automaticity (“parkinsonism” or gait disturbance) measured 
by clinical signs on motor rating scales [2] and more 
specifically related to gait speed or timed walking [3, 4].   

Unfortunately, standard tests of cognition and physical 
slowing are typically administered only when an elder has 
become significantly impaired [5], essentially precluding 
early detection of change, and hence precluding restorative 
or preventive intervention.  Furthermore, clinic-based 
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assessment of function at periodic intervals may not provide 
an accurate picture of an elder’s true function, since 
individuals have “good days” and “bad days”. A promising 
new approach to early detection of cognitive decline in the 
elderly is to use unobtrusive technology to do continuous 
assessment of activities that may be predictive of the onset 
of cognitive changes. 

A number of researchers have begun to investigate 
methods of remotely monitoring the activity of people in 
their homes for extended periods of time [6-8]. For example, 
in  a study conducted in the homes of 8 elderly people 
monitored for 2-20 months, a single pyroelectric motion 
detector in each room was used to map typical patterns of 
activity [8].  Recently, we found that variability in walking 
speed was significantly greater in a group of elderly subjects 
with Mild Cognitive Impairment, as compared to healthy 
elders [9]. In that study, we measured walking speed in the 
home over a six-month period on a continuous basis, using 
restricted-field pyroelectric infrared motion sensors (PIR 
sensors).  The results of that study suggested that continuous 
assessment of walking speed in the home may have the 
capacity to capture changes that are indicative of early 
cognitive decline, and we are currently conducting a large-
scale longitudinal study of 237 community-dwelling seniors 
to test that hypothesis [10].  

This Oregon Center for Aging and Technology (ORCA-
TECH) study is focused on the use of intelligent in-home 
technologies for detecting early cognitive decline. We are 
using unobtrusive, commercially-available sensors (X10 
MS16A PIR motion sensors and X10 DS10 contact sensors, 
X10.com) to collect continuous data about activity in the 
home. One of the key outcome measures in the study is 
walking speed. Walking speed is measured by distributing 
four restricted field motion sensors in a row along the 
ceiling of a hall or path of frequent traffic in the home. 
Conceptually, these sensors fire only when somebody walks 
directly under them, and therefore one can estimate walking 
speed from the difference in firing times of sensors along the 
walking line provided an accurate measurement of the 
distance between the sensors is made. In order to restrict the 
field of view, IR-opaque tape is placed over the Fresnel lens, 
leaving a narrow window. These sensors have a field of 
view of about ±4 degrees, corresponding to ±6.5cm at a 
distance of 90cm from the sensor. However, the use of the 
tape reduces the sensitivity of the sensor, so that sometimes 
the sensors will fail to fire. In addition, the placement of the 
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tape is not precise, and therefore accurate measurement of 
the location of movement that causes the sensor to fire is not 
possible. Therefore, it was important for us to evaluate the 
accuracy with which we can measure walking speed with 
these sensors.   

In this study we compared walking speed as measured 
using PIR sensors to ground truth measures taken using the 
commercially available GAITRite® Walkway System gait 
mat. These results were then compared with walking speed 
as measured using the clinical gold standard test of a 10 
meter timed walk, and with in-home walking speeds 
measured using PIR sensors on an ongoing basis. 

II. METHODS 

A. Data Collection for technology evaluation 
Eighteen subjects, including five with Mild Cognitive 

Impairment, participated in the experiment; all subjects 
provided informed consent. A single walking line was set up 
in a conference room at the facility in which the participants 
live. A GAITRite® Walkway System gait mat was placed 
on the floor along the walking line, and six restricted-field 
IR sensors were placed on the ceiling at a height of 2.6m at 
two foot (.61m) intervals. Subjects were instructed to walk 
at their normal walking speed, at a fast walking speed, or at 
a slow walking speed. Subjects walked along the walking 
line fifteen times at each speed. Their precise walking speed 
for each trial was calculated using the gait mat data. Firing 
times were collected for each PIR sensor during each trial 
and used to determine the accuracy of the PIR sensors for 
measuring walking speed. PIR sensor data during the 
walking speed test was lost for five subjects due to operator 
error; therefore, the calibration of the walking speed 
described below excluded the data from those subjects. 
However, we did compare their gait mat results and in-home 
results. 

B.  Derivation of walking speed from IR sensor data 

The motion sensors used in this study are maximally 
sensitive to movement across their field of view. If the 
motion sensors were placed precisely and the sensor firing 
response were always the same, one could use the times 
between sensors to directly calculate walking speed. By 
mounting them on the ceiling, we avoid the problem of the 
angle of approach to the sensor itself. However, the sensors 
have variability in their response to heat change, and the 
restriction of the Fresnel lens to a narrow field of view is 
imprecise. Therefore, the precise position at which 
movement triggers the sensor cannot be measured. Instead, 
we have developed a method for estimating the distance 
between the sensors; these distances can then be used to 
calculate walking speed along the sensor line. 

Let the physical location of sensor i be ix . Due to 
variability in the restriction of the field of view of the 
sensor, assume that the actual location at which an ideal 

sensor would be triggered is ,ix  where the difference 

i ix x− varies with the sensor and the direction of 
movement. We model the actual response of the sensor to 
movement as a random variable { }ie with zero expected 

value, such that the location of movement which triggers the 
sensor is at random locations{ }.i ix e+  Thus, for a person 

moving at constant velocity kv during any particular walk k 

between two sensors, their velocity kv can be calculated as: 

( ) ( )
( )

( ) ( )
( )

,
k k k k

j j i i j i j i
k k k k k

j i j i

x e x e x x e e
v

t t t t

+ − + − + −
= =

− −
  

where k
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it are the firing times of sensors i and j 
respectively, and the equation holds for any pair of sensors 
in the firing line. If their velocity is constant during any 
given walk through the sensor line, then for three sensors (i, 
j, k) we have 

 
( ) ( )

( )
( ) ( )

( )
k k k k

i h i h j i j i

k k k k
i h j i

x x e e x x e e

t t t t

− + − − + −
=

− −
 (1) 

for all walks k. Since { }ie and { }jt  are independent 

random events for ,i j≠   

{ } { } { } 0.k k k k
j i j iE t e E t E e= =  

Rewriting equation (1) and taking the expectation value of 
both sides we get 
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Thus, for a large number of walks along the sensor line, the 
mean difference in firing times of the sensors provides a 
scaled estimate of the distance between the sensors,  
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This estimate can then be used to calculate the walking 
speed kv  through the sensor line on any given run k. The 
scaling constant c must be determined through calibration. 
For our technology evaluation experiments, the gait mat 
provided the ground truth measures of velocity to calibrate 
the sensor line used in that experiment.  

C. Collection of in-home walking speed estimates 
The 18 subjects who participated in the technology 

evaluation experiment are enrolled in the longitudinal study, 
and therefore walking speed along a sensor line is collected 
on an ongoing basis in their homes. A four PIR-sensor 
walking line was placed along a hall or commonly used path 
in each home, and the physical distance between the sensors 
was recorded. Sensor firings were sent to a wireless receiver 
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connected to a computer in the home, where they were time-
stamped and then uploaded daily to the research database.   

Unlike during the technology evaluation, we do not have 
a ground truth measure of walking speed for each traversal 
of the walking line in the homes. Therefore, our estimates of 
walking speed between each pair of sensors are based on the 
physical locations of the sensors { }.ix  

If the distances between the physical locations 

( )j ix x− were accurate measures of the actual triggering 

locations ( ) ,j ix x−  then this value could be used to 

determine the precise walking speed between the sensors 
based on the firing times. We can adjust our estimates of 
physical location using equation (2), which provides a 
scaled estimate of the triggering distances. For a 4-sensor 
line at physical locations ( )1 2 3 4, , ,x x x x we will have 

twelve pair-wise estimates of the relative distances 

ijxΔ using equation (2) – two for each direction, for each 

unique pair of sensors. The longest of these, 14xΔ and 

41,xΔ can be used to provide a nominal scaling factor using  
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Then, to estimate walking speed through any particular 
segment we use ijc xΔ as the distance estimate: 
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For each home, we calculated the median walking speed, 
variance in walking speeds, and range of walking speeds in 
the home for the three month interval immediately preceding 
the gait mat experiments. We also report the clinical timed 
walk score for each subject, taken at their enrollment into 
the study.  

III. RESULTS 

A. Results of gait mat experiments 
Figure 1 shows the comparison between the walking 

speed as measured by the gait mat and that measured using 
the motion sensors. The plots show the speed measured 
using the gait mat (abscissa) against the walking speed 
estimated using the calibrated scaling constant. We 
examined the walking speed estimate for cases when two, 
three, four, or five sensors fired during the run.  Although 
there were fewer instances where all sensors fired, the best 
results were obtained when all sensors in the line fired. The 

 
Figure 1. Plot of true walking speed as measured using a gait mat 
(abscissa) and estimated walking speed from PIR sensors (ordinate). 
The PIR walking speed is plotted as positive values for movement 
through the sensor line in one direction, and negative values for 
movement in the other direction, to allow both to appear on the same 
plot. The top plot shows all walks through the sensor line in which at 
least 2sensors fired; the bottom plot shows those walks in which at 
least 5 sensors fired. 

Figure 2. Comparison of gait mat walking speeds, clinical timed walk 
measures, and in-home walking speeds for all subjects. The blue lines 
represent the range of speeds for each subject during the gait mat 
experiment, with the median speed marked by the horizontal line. The X’s 
are the median walking speeds estimated from the ceiling sensors used 
during the gait mat experiments (13 subjects only). The solid squares are 
the walking speeds as measured suing the clinical timed walk test, and the 
triangles are the median walking speed measured over 3 months in the 
home. 
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estimated walking speed was highly correlated to the 
measured walking speed in all cases (2 sensors: r=.93, 3 
sensors: r=.96,  4 sensors: r=.97,  5 sensors: r=.99).  

B. Comparison of in-home PIR, clinical, and gait mat 
measures 

We collected more than 100,000 walking speed samples 
in three months in the 18 homes, representing from 16 to 
204 walking line measures per day on average.  The range of 
speeds observed in the home was more restricted than that 
during the gait mat experiment. In particular, the mean 
across subjects of the maximum walking speed during the 
gait mat experiment was 139.5±26.6 cm/s, versus 99.3±9.2 
cm/s in the homes. This is not surprising, since the walking 
speed in the homes reflects typical daily behavior.  

Figure 2 shows the results of the gait mat experiment, 
clinical timed walk test, and in-home measures for each 
subject. Interestingly, for most subjects the clinical timed 
walk was faster than the median walking speed measured 
during the gait mat experiment, which probably reflects the 
propensity for subjects to “do their best” when undergoing a 
clinical assessment. In contrast, the median in-home walking 
speed was slower than that of the gait mat experiment.  

IV. DISCUSSION 
This study shows the potential of using simple PIR 

sensors to measure walking speed in the home. Using the 
gait mat for calibration, we were able to accurately measure 
walking speed using PIR sensors, and better results were 
obtained when more sensors were included in the walking 
line. The use of the pair-wise distance for our in-home 
scaling factor provides a slightly biased estimate of walking 
speed that can be used in the absence of a calibrated scaling 
factor.  We used the longest pair-wise distance because it 
seems to have the lowest bias since it has the greatest 
absolute distance.   

Clearly, the speed of in-home walks are biased by the 
participants intention (e.g. rushing to the phone, thinking 
while walking). However, because we can collect a large 
number of measures, the variance introduced by these 
factors would not influence comparisons of walking speeds 
of an individual over time. For example, a subject who was 
depressed might show an overall slowing, even if they 
occasionally speeded up to answer the phone. 

The approach does have some limitations. It should be 
noted that the physical measures for the in-home sensor lines 
are not precise, and therefore absolute estimates of walking 
speed in the home would require calibration with a gait mat 
or other ground truth system. Our method of scaling allows 
us to use more data, since all pair-wise data can be adjusted 
based on the scaling factor, but the true scaling factor cannot 
be determined without calibration. In contrast, comparisons 
month-to-month or week-to-week within a subject provide 
accurate measures of change over time. In addition, this 
approach is only effective if there is a path through the home 

along which subjects walk on a regular basis. However, 
because we can use all walking events along the line, even if 
not all sensors are triggered or the subject does not walk the 
entire line, we have found that the sensor line does not 
necessarily need to be located in a hall or restricted path of 
motion. Finally, in multi-person homes there must be a way 
of disambiguating which person is walking along the sensor 
line. We have explored the use of Hidden Semi-Markov 
Models for this purpose, as well as the use of body-worn 
identifiers, but we have not found an optimal solution that 
works in all cases. 

In just three month of data collection, we collected an 
average of 6700 walking speed estimates for each subject. 
The strength of this approach lies in our ability to collect 
significant numbers of measurements in a short period of 
time. This will allow us to track changes due to acute events, 
as well as trends over time. We are now monitoring more 
than 200 people, and anticipate that these walking speed 
data will provide invaluable insights into changes in 
mobility in community-dwelling elders. 
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