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Abstract— The objective of this study was to 
characterize the time-course of changes reflex stiffness 
after stroke, and to use the Fugl-Meyer Assessment 
(FMA) at 1 month to predict the ensuing recovery 
patterns over 1 year. We quantified the modulation of 
reflex stiffness as a function of elbow joint angles at 1, 2, 
3, 6, and 12 months after stroke, using a parallel cascade 
system identification technique. We then used the 
“growth mixture” and logistic regression models to 
characterize recovery patterns over 1 year and to predict 
these patterns, based on the FMA score at 1 month. We 
observed two major distinct recovery classes for the 
relationship between reflex stiffness and elbow angle.  
The FMA at 1 month was a significant predictor of reflex 
stiffness as a function of elbow angle at different time 
points in the first year. The logistical regression class 
membership may enable us to accurately predict reflex 
behavior during the first year, information of great 
potential value for planning targeted therapeutic 
interventions. Finally, the findings suggest that abnormal 
reflex function could contribute to functional motor 
impairment. 
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I. INTRODUCTION 
Both the impairment and functional limitation that 

follows stroke are caused by the direct effects of altered 
cortical commands on visuomotor control [1-3], but there are 
also changes in neuromuscular properties secondary to 
stroke [4, 5]. A clear understanding of contributions of these 
different impairment mechanisms to clinical function is a 
prerequisite for the rational development of effective 
therapies [6].  

Furthermore, if these “secondary” changes to muscle 
mechanical properties can be minimized, an optimum 
recovery can theoretically be achieved. However, to achieve 
this outcome, there will need to be properly timed 
interventions to preempt muscle atrophy and damage. Such 
treatments, ideally, would require precise knowledge of the 
natural history and development of neuromuscular 
abnormalities, i.e. a quantitative time-course analysis, which 
has yet to be provided. The  lack of such quantitative data is 

due primarily to the general lack of accurate and sensitive 
tools for separating forces generated by reflex mechanisms 
from those generated by mechanical properties of musculo-
tendon mechanisms [7, 8].  

To address these deficiencies, we have recently 
developed and utilized a parallel cascade identification 
technique [7, 9], to characterize mechanical abnormalities 
associated with the spastic joint [4, 5].  

In this study, we used this technique to quantify the 
changes in reflex mechanical properties associated with 
spasticity in the upper extremity of hemiparetic stroke 
survivors at different time intervals over a period of 1 year 
following a stroke. We also used the growth mixture models 
[10, 11] to characterize the reflex recovery patterns. In 
addition, using the logistic regression model [10, 11], we 
explored the effects of Fugl-Meyer Assessment[6] (FMA) at 
1 month after stroke on class membership. 

  II. EXPERIMENTAL PROTOCOL  
Twenty-one hemiparetic stroke subjects with different 

degrees of spasticity were recruited within 4-weeks 
following stroke. the subjects had approximately even side 
distribution (11 left hemisphere/ 10 right hemisphere) and 
different type of stroke (14 hemorrhage/ 7ischemia).  
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Figure 1: Experimental setup 
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Subjects were seated on an adjustable chair with their 
forearm attached to the beam of a stiff, PID controlled motor 
by a custom fitted fiberglass cast. The seat was adjusted to 
provide shoulder adduction of 80o and align the elbow axis 
of the rotation with axis of the torque sensor and the motor 
shaft (Figure 1).  

Joint position, velocity and torque were recorded by a 
potentiometer, tachometer & torque transducer, respectively. 
Electromyograms (EMGs) from biceps, brachoradialis, and 
triceps were recorded using bipolar surface electrodes.  

A series of pseudorandom binary sequences with the 
amplitude of 0.03 rad and a switching-rate of 150ms were 
used to perturb the elbow at different positions from 45o 
flexion to 75o extension, at 15o intervals. A 90o angle of the 
elbow joint was considered to be the neutral position (NP) 
and defined as zero. The subjects were examined at five 
intervals following stroke, i.e. at 1, 2, 3 6 and 12 months 
after stroke.  

These experiments were conducted on the paretic side, 
while subjects were relaxed. Flexion is considered negative 
by convention. 

III. ANALYSIS METHODS 
A. Identification of Reflex Stiffness 

Intrinsic and reflex contributions to the elbow stiffness 
dynamics were separated using the parallel-cascade 
identification technique [7, 9].  

Reflex stiffness dynamics were modeled as a 
differentiator, in series with a delay, a static nonlinear 
element (which is half-wave rectifier) and then a dynamic 
linear element. Reflex stiffness dynamics were estimated by 
determining the impulse response function, between velocity 
as the input and the reflex-torque as the output, using 
Hammerstein identification methods [9]. 

Non-linear least squares methods were used to fit 
parametric models to the reflex IRFs. The linear, dynamics 
of the reflex stiffness were well described by a third order 
system. 

B. Statistical Analysis 

We used the growth mixture model [10-12] to extract the 
recovery patterns (class) for reflex stiffness parameter over 
one year.  This model assumes that the population can be 
divided into several latent classes (subpopulations) and that 
there is a unique random effects model characterizing the 
associations between the longitudinal responses and a set of 
predictors in each subpopulation. Furthermore, the growth 
mixture modeling allows the membership of the latent 
classes to be associated with a group of baseline factors, via 
a multinomial logistic regression model.  

In the fitted growth mixture model, the multinomial 
(polytomous) logistic regression [10, 11] was used to 
characterize the association between the membership and 
FMA.  Results with p-values less than 0.05 were considered 
significant. 

IV. RESULTS 

A. Time-course of Changes in Reflex Stiffness  

We studied the time-course of changes in reflex 
stiffness gain (G) of the paretic elbow over a range of elbow 
angles, at five different time points over the year after 
stroke. Our results showed that G was strongly position 
dependent (p<0.01) (Figure 2); G increased progressively 
when the elbow was moved from full flexion to full 
extension. However, the slope of changes in G with 
increasing elbow angle varied among subjects, and was 
different at the different time points.  

G was also strongly time-dependent (p<0.01). Our 
results showed two distinct time-dependent patterns. In 14 
subjects, G increased progressively with time from 1 month 
to 12 months (Fig 2A), whereas in 7 subjects it decreased 
with time (Fig. 2B).  

 
Figure 2:  Time course of changes in reflex stiffness ( )RG vs.  

elbow angle over one year after stroke for two different stroke 
survivors with different neuromuscular recovery pattern. NP: 

Neutral Position (90o). 
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B. Recovery of Reflex Stiffness 

To characterize the modulation of G with elbow angle 
over 1 year after stroke, we fit a regression line to the 
changes of G vs. the elbow postion at each time point for 
each subject. We then used the “growth mixture” model to 
characterize recovery of these measures over 1 year; i.e. 
Reflex Intercept ( GINT ), and Reflex Slope ( GSLP ).  

We identified three classes of recovery patterns 
for GINT and GSLP . These classes are defined using the 
growth mixture model of the relation between elapsed time 
and these reflex parameters. Classification of individuals 
based on their most likely class membership resulted in class 
sample size of 33% for class 1, 48% for class 2 and 19% for 
class 3, for both GINT and GSLP .   

  

 
Figure 3: Recovery patterns of reflex intercept ( GINT ), and reflex 

slope ( GSLP ). A GINT ; B GSLP . Class 1 in green, Class 2 in 

blue and Class 3 in red. 

Fig. 3A shows the observed and estimated mean 
GINT for all classes. For class 1, the growth mixture model 
provides an intercept of 0.812 Nm.s/rad (p<0.01), indicating 
that a significant level of GINT was observed at 1 month 
post stroke. However, the slope of this ( GINT -Time) 
relation was 0.002 Nm.s/rad.month (p, NS) which is non-
significant at 0.05 level. For class 2, the intercept was 3.12 
Nm.s/rad (p<0.01), indicating that a very high level of 
GINT was observed at 1 month post stroke. However, the 
slope was -0.202 Nm.s/rad.month (p<0.01), indicating that a 
significant decrease in GINT occurred in 5 measurements 
taken over 1 year post stroke. For class 3, our estimate for 
the intercept and slope were 0.6 Nm.s/rad (p<0.01) and 0.13 
Nm.s/rad.month (p<0.01), respectively, indicating that a 
significant increase in GINT at 1 month, which followed by 
significant growth in GINT  over 1 year post stroke. Similar 
classes were observed for GSLP  (Fig. 3B). 

C. Relation between Reflex Stiffness and Functional 
Assessment of Motor Impairment (FMA) 

The logistic regression was used to explore the effects of 
FMA score at 1 month post stroke on class membership 
using class 1 as the reference group. The estimated 
coefficient for the FMA score was -4.42 (p<0.01) and 0.02 
(p, NS) for class 2 and 3, respectively, indicating that the 
logit and thus probability for class 2 membership decreases 
as FMA score increases. 

The logistic analysis showed that FMA at 1 month is a 
significant predictor for GSLP class membership. Thus, 
subjects with an FMA score of >18 at 1 month after stroke 
were more likely belong to class 1. Subjects with FMA score 
of ≤4 were more likely to belong to class 2, and other 
subjects with FMA score between 5 and 18 were likely 
belong to class 3.  

Similarly, based on our analysis, FMA measure at 1 
month was a significant predictor for GINT  class 
membership. 

V. DISCUSSION AND CONCLUSIONS 

Our results demonstrate that both GINT  and GSLP  
changed significantly over time, indicating that stroke 
affects both reflex stiffness magnitude (offset) and its 
modulation with the joint angle. This addresses controversy 
in literature regarding the nature of changes in reflex 
properties (threshold [13-16] or gain [4, 5, 8, 17-19]) post-
stroke, revealing changes in both with time. 

Our results reveal that FMA measured at 1 month is a 
significant predictor for the reflex recovery patterns. In fact, 
we find an inverse relationship between the FMA at 1 month 
and reflex patterns. From a practical standpoint, these 
findings for subjects who display  high initial  values of 
GINT , and GSLP , this forewarns the treating clinician that 
high initial levels of the FMA may predict declining levels 
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of hyper-reflexia with time, and that pharmacologic 
treatments may not be warranted long-term. Conversely, 
subjects with midrange FMA at the initial evaluation will 
often develop hyper-reflexia, and warrant careful tracking of 
their clinical status.  
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