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Abstract 

Respiratory sinus arrhythmia (RSA) means heart rate 

changing synchronously with respiration and is usually in 

high frequency range (HF, 0.15-0.4Hz). Depending on 

measurement protocol, respiration rates may alter in both 

low frequency (LF, 0.04-0.15Hz) and HF range distorting 

frequency domain indices of heart rate interval (RRi) 

series and systolic blood pressures (SBP) series. Adaptive 

filtering can be used to extract the RSA component from 

cardiovascular signals. However, this method requires a 

reference respiration signal. We demonstrate how ECG 

derived surrogate respiration by principal component 

analysis (PCA) can be used as a reference signal in Least 

Mean Square (LMS) adaptive filter. Data set consist of 23 

healthy males performing spontaneous breathing at rest. 

RRi and SBP series were adaptively filtered using 

measured respiration and ECG derived respiration. We 

conclude that the ECG-based respiration surrogate is 

adequate to extract the RSA component.  
 

1. Introduction 

Heart rate accelerates during inspiration and 

decelerates during expiration. This commonly known 

heart rate variation that is synchronous with respiration is 

called as respiratory sinus arrhythmia (RSA) (1).  The 

RSA arises mainly via two different mechanisms: 1) 

mechanical effects of respiration (mainly changes in 

venous return which directly modulates sinus node) (1), 

and 2) through autonomic nervous system (2). Periodical 

respiration component is also seen in blood pressure 

mainly due to mechanical intrathoracic pressure changes. 

Respiration component can easily been seen in frequency 

domain analysis of heart rate interval (RRi) series and 

systolic blood pressure (SBP) values as a power peak at 

respiration frequency. Usually respiration peak occurs at 

high frequency range (HF, 0.15-0.4Hz).  

Depending on the respiration frequency of the subject, 

the RSA may overlap the low frequency range (LF 

power, 0.04-0.15Hz) and thus distort the frequency 

domain indices, e.g. the LF power or LF peak frequency. 

Also baroreflex analysis in frequency domain can be 

easily biased when respiration rate is within the LF band. 

Therefore, it is useful to extract the RSA component to 

have “respiration-free” HRV indices. The extracted RSA 

component itself may also be a useful index of 

cardiovascular system. 

We have previously proposed an adaptive least mean 

square (LMS) filtering method for reducing bias in BRS 

estimation with spontaneous respiration protocol (3). The 

LMS filter was selected because of its good stability, 

efficiency and simple structure.  The LMS filter requires a 

reference signal from interfering source, i.e. respiration. 

An ideal arrangement in practical applications would be 

that no separately measured reference of respiration is 

needed since the number of sensors would be reduced in 

the measurement setups. An additional benefit would be, 

e.g., that previously recorded data with no respiration 

signals could be analyzed for respiration effects.   

Methods to derive a surrogate respiration signal from 

electrocardiogram (ECG) have been introduced in the 

literature. A surrogate respiration signal is a signal with 

varying amplitude corresponding to temporal pattern of 

respiration. Principal component analysis (PCA) was 

recently used to derive a surrogate respiration signal from 

single-lead ECG (4).  In this paper, we utilize this PCA 

derived respiration as a reference signal in our LMS-

based adaptive filter to extract the RSA component from 

RRi and SBP series and thus obtain more accurate HRV 

analysis. 

 

2. Methods 

2.1. Data 

ECG was measured from twenty (N = 23) healthy men 

in a resting position (Cardiopac 3M33, Nec-Scan –ei 

instruments, Japan). A noninvasive blood pressure signal 

was acquired from a finger by Finapres (Ohmeda, USA). 
Subjects breathed spontaneously and respiration was 

acquired using a temperature sensor (thermistor) and a 

monitor (Hewlett Packard GMBH, USA). Sampling 

frequency was 1000Hz. Measurements were performed in 

Verve, Oulu, Finland.  The RRi series, i.e. tachogram was 

obtained by means of detecting automatically R-peaks 

with a method that uses a threshold for amplitude and a 

first derivative. The series of SBP values, i.e. systogram 

was derived from the continuous blood pressure signal by 
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detecting the maximum value of blood pressure between 

the corresponding adjacent R-peaks. Detections were 

verified visually. Tachogram and systogram were 

interpolated at 2Hz and respiration was downsampled 

regularly at 2Hz, respectively, in order to get time-

synchronous signals. Very low-frequency components 

(<0.04 Hz) of the RRi and SBP oscillations were removed 

using the Savitzky-Golay method   (polynomial order 3. 

frame size 51). Eleven subjects had a mean respiration 

rate < 0.15Hz, while the rest of them had a respiration 

rate > 0.15Hz. It is important to note that these groups are 

defined by the peak frequency of respiration. In practice, 

the frequency range of the subjects of Group 1 often 

overlaps partly the HF band. 

 

2.2. Adaptive filtering 

The respiratory component was extracted using LMS 

adaptive filter described previously (Figure 1) (3). Used 

technique is presented here briefly. Note that equations 

are written for RRi series but applied similarly also for 

SBP series. First, the resampled respiration denotes as 

RESP, and either RRi series or SBP series are applied 

sample by sample to Finite Impulse Response (FIR) -

filter according to equation (1): 
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where the filter output )(ˆ kiRR RESP   is an estimate of 

respiratory component in the RRi series and N is the 

number of adjustable filter coefficients )(iwk . An 

estimate of respiration-free RRi series, realiRR ˆ , is then 

calculated by subtracting the estimate of respiratory 

component RESPiRR ˆ  from the RRi series denoted as RRi: 

RESPreal iRRRRiiRR ˆˆ −=    (2) 

Figure 1. Block diagram of signal preprocessing and LMS 

adaptive filter. 

 

The LMS adaptive algorithm adjusts the filter coefficients 

by minimizing the mean squared error between the RRi 

series and the estimate of respiration component.  A new 

set of weights is obtained iteratively with equation: 

)(2)()1( kRESPekwkw kµ+=+ ,  (3) 

where parameter µ controls stability and the rate of 

convergence. The following constraint ensures the 

convergence of the filter coefficients: 

                     0 < µ < max
powerinput  tap

2
µ= , (4) 

where the tap input power refers to a sum of mean-

squared values of the filter inputs RRi(k), RRi(k-

1),…,RRi(k-N+1).  For the sample-by-sample based 

adaptation, a safety factor of 10 in convergence parameter 

µ (µ max1.0 µ≤ ) is commonly applied and used also in 

this study.  

 

2.3. Principal component analysis 

PCA can be used to reduce the dimensionality of 

multivariate data. By PCA the underlying hidden and 

more simplified structure of complex data set can be 

found. We adopted the method to apply PCA for ECG 

from previously published and added a part which aims to 

select the correct PC to act as respiration reference in 

LMS filter. 

First the multivariate data set X(t) is constructed from 

single-channel ECG by aligning consecutive segments of 

QRS-complexes xn(t): 

[ ])(),...,(),()( 21 txtxtxt n=X   (5) 

Each segment xn(t) is obtained as a fixed 200ms window 

around R-peak from which the mean is removed (Figure 

2). The covariance matrix Σ is then defined: 

)cov(XΣ =
    

(6) 

Next the eigenvectors (αj) and eigenvalues (λj) are 

computed as a solution to 

njj ,...,2,1==  αΣα jj λ
    

(7) 

and PCs are obtained as: 

njPC ,...,2,1==  Xα jj                  
(8) 

PCs are arranged in 

order of magnitude of 

eigenvalues. The 

surrogate respiration 

signals are given by 

corresponding 

eigenvectors. The PCs 

explain most of the 

variability in the QRS 

complexes. This 

variability is mostly 

respiratory-origin but non-

respiratory variability may also occur. Thus a critical 

point is to select the correct surrogate respiration signal 

that is suitable for adaptive filtering as well. We 

developed a simple algorithm to select the correct 
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eigenvector as surrogate respiration. The algorithm does 

the LMS filtering using four first eigenvectors and current 

tachogram signal. The eigenvector which minimizes the 

residual tachogram power is selected to act as a surrogate 

respiration signal. PCA and selection of eigenvector using 

this algorithm was done separately for each subject and 

received surrogate signals were verified to correlate with 

measured respiration signals. The PCs which produce the 

correct surrogate respiration signal varied subject-wise 

such that proportions in whole study group were: 22%, 

30% and 48% had PC2, PC3 and PC4 as surrogate, 

respectively. In Figure 3 is plotted one case of PCs and 

their eigenvectors. 

 
Figure 3. First four PCs and their eigenvectors. PC3 

presents here the selected surrogate respiration signal. 

 

2.4. Spectral indices and statistics 

Power spectral densities (PSD) were calculated for 

both RRi and SBP series by Welch’s method (64s 

window, 1024 point FFT and 50% overlapping windows). 

Powers were integrated in LF and HF range and center 

frequencies were defined as maximal peak frequencies. 

Statistical differences between adjacent spectral domain 

indices were calculated from three cases: baseline, LMS 

filtering, LMS filtering with PCA derived respiration. We 

used Wilcoxon Signed Ranks Test with values p <0.05 

considered statistically significant. All the statistics were 

calculated using SPSS® software (SPSS Inc, USA). 

 

3. Results and discussion 

Data was divided in two groups according to subject 

respiration frequency: Group 1 consisted of subjects 

whose respiration rate had a mean respiration rate < 

0.15Hz and Group 2 had respiration rate had a mean 

respiration rate > 0.15Hz.  In Figure 4 is presented a 

typical example of PSD of original RRi series and RRi 

estimate and extracted RSA estimate obtained by adaptive 

filtering when subject is breathing at lower frequency rate 

(<0.15Hz). Upper figure A) is obtained using LMS 

adaptive filter with the measured respiration as a 

reference while B) is obtained using PC derived surrogate 

respiration signal. It can be seen that both respiration 

references produce similar results.  
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Figure 4. PSD of original RRi, residual RRi estimate, and 

substracted RSA estimate. Subject’s respiration rate < 

0.15 (Group 1). A) LMS with real respiration reference 

and B) LMS with PCA derived respiration reference. 

 

LF energy is clearly reduced at respiration frequency 

when RSA component is extracted.  From Figure 4 it can 

also been seen that spontaneous respiration rate may not 

be totally in either LF or HF band but it can partly 

overlap both bands. Thus when respiration component is 

extracted it reduces both LF and HF powers. 

Figure 5 illustrates a 

case were respiration 

frequency is within 

the HF band. The 

adaptive filter 

removes the RSA 

component 

completely. As a 

result, frequency 

domain indices will 

not be biased.  

Figure 6 illustrates how 

the RSA overlapping LF 

band distorts the peak 

frequency estimation. 

Clearly the most dominant LF peak in the PSD of SBP 

originates from respiration. Removing the RSA peak 

reveals that dominant LF peak is within the lower 

frequencies. 

A) LMS 

B) PC-LMS 
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Figure 5. PSD of original 

SBP, SBP estimate, and 

substracted RSA estimate.  
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LF and HF powers 

were integrated and 

center frequencies 

for RRi and SBP 

were defined without 

the RSA component 

extraction 

(=Baseline) and with 

RSA component 

extraction by 

adaptive filtering. 

Adaptive filtering was 

performed using both 

measured respiration signal (=LMS) and PC derived 

surrogate signal (=PC-LMS) and results are presented in 

Table 1 and Table 2 for RRi and SBP series, respectively. 

When RSA is extracted the power of original RRi or SBP 

is reduced at respiration range. With Group 2 subjects the 

power in LF band did not change implying that the 

adaptive filter reduces the respiration effect only. With 

Group 1 subjects there is a decrease in HF band power 

because the respiration frequency range overlaps partly 

the HF band, as explained in Section 2.1. The peak 

frequencies of the bands were only slightly changed by 

adaptive filtering in that band from which respiratory 

component was extracted. The filtering did not change the 

peak characteristics of respiratory-free band. Results 

reveal clearly that both respiration signals (real or 

surrogate) are able to extract the RSA component from 

RRi and SBP series with similar performances without 

significantly distorting other spectral characteristics. 

 

 

Table 1. Spectral indices for RRi series (* indicates p<0.05 when compared with baseline) 

HRV 
parameters 

Group 1 ( resp < 0.15Hz) Group 2 ( resp >0.15Hz) 

Baseline LMS PC-LMS Baseline LMS PC-LMS 

LF [ms2] 2412 ± 1446 858 ± 461* 996 ± 434* † 1151 ± 964 1137 ± 945 953 ± 718* 

HF [ms2] 894 ± 734 410 ± 294 * 380 ± 292 * 702 ± 712 291± 228 * 275± 208 * 

Cent_f_LF [Hz] 0.11 ± 0.17 0.089 ± 0.022* 0.099 ± 0.024* 0.92 ± 0.014 0.92 ± 0.015 0.92 ± 0.014 

Cent_f_HF [Hz] 0.21 ± 0.060 0.20 ± 0.039 0.21 ± 0.061 0.24 ± 0.037 0.20 ± 0.037* 0.21 ± 0.042* 

 

Table 2. Spectral indices for SBP series (* indicates p<0.05 when compared with baseline) 
HRV 

parameters 

Group 1 ( resp < 0.15Hz) Group 2 ( resp >0.15Hz) 

Baseline LMS PC-LMS Baseline LMS PC-LMS 

LF [mmHg2] 6.6 ± 2.8 2.8 ± 1.5* 3.1 ± 1.6* 5.5 ± 5.3 5.6 ± 5.3 5.1 ± 3.9 

HF [mmHg2] 1.1 ± 0.86 0.36 ± 0.20* 0.39 ± 0.29* 1.1 ± 0.86 0.55 ± 0.78* 0.79 ± 1.0* 

Cent_f_LF 

[Hz] 
0.093 ± 0.021 0.069± 0.021* 0.083 ± 0.017* 0.068.± 0.022 0.071 ± 0.021 0.078 ± 0.019 

Cent_f_HF 

[Hz] 
0.20 ± 0.046 0.19 ± 0.029 0.18 ± 0.23 0.23 ± 0.042 0.22 ± 0.055 0.22 ± 0.47 

 

4. Conclusions 

The ECG-based PCA derived surrogate respiration 

signal was used as reference signal in LMS adaptive 

filtering to extract the RSA component from RRi and 

SBP series. The results show that the method reached 

similar results as when measured respiration was used as 

a reference in adaptive filter. The filtering distorted 

spectral properties o the signals only slightly. 
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