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Abstract

The atrioventricular (AV) node plays a crucial role dur-

ing atrial fibrillation (AF). The aim of this study is to

present an AV node model which can be fitted to short-term

ECG recordings in order to infer certain AV node charac-

teristics. The proposed model is characterized by: i) the

arrival rate of atrial impulses; ii) two different refractory

periods, corresponding to dual AV nodal paths; iii) the

probability of an atrial impulse choosing either of these

pathways; iv) a parameter modeling prolongation of the

refractory period due to different physiological reasons.

The model was tested on atrial fibrillatory ECGs recorded

from 33 patients; the average normalized absolute error

between the normalized RR histogram and the estimated

model probability density function was 0.0023 ± 0.0016,

(20-ms bin size, 0–2 s interval). These preliminary results

are encouraging as AV nodal properties can be noninva-

sively assessed by a set of statistical parameters with a

simple electrophysiological interpretation.

1. Introduction

During atrial fibrillation (AF), a large number of atrial

impulses bombard the atrioventricular (AV) node and some

of them are blocked. Even if the important role played

by the AV node is widely recognized, the relationship be-

tween atrial and ventricular frequencies and AV node has

not been deeply studied. A number of models of the AV

node during AF have been proposed. The first proposed

AV node model [1] considers the AV junction as a lumped

structure, whose behavior represents the temporal and spa-

tial summation of the electrical activity of the cells in this

complex structure. The atria are assumed to bombard the

AV node with impulses arriving randomly in time, accord-

ing to a Poisson distribution. When the AV node is not

refractory, its transmembrane potential is assumed to in-

crease, spontaneously as well as by each atrial impulse ar-

riving. When the transmembrane potential reaches a cer-

tain threshold a new action potential starts, initiating a ven-

tricular beat. This model is primarily useful for simula-

tions, whereas its use on real data produced parameter es-

timates which are unphysiological.

Other models [2, 3] need invasive atrial and ventricu-

lar recordings to be applied to real data. In [2], given

the measured atrial activation times, the times of ventric-

ular activations are computed. The computed activation

times are compared to the observed ones, computing a

distance based on either the area below the series or the

Kolmogorov-Smirnov test, while the parameters describ-

ing AV node function are varied. Parameters which give

the best agreement between the computed and observed

activation times are identified by scanning the parameter

space of the model. The model was tested on only two

patients’ recordings (one during AF and one during atrial

flutter): the results were less satisfactory during AF than

during flutter, due to the higher irregularity of AF. Finally,

simulation models have been proposed, which attempts to

explain AV nodal characteristics [4] or the effect of pac-

ing [5]. These models have many parameters that describe

the underlying dynamics in more detail than the above-

mentioned models; however, these models are not suitable

for parameter estimation from real data.

The aim of this study is to present an AV node model

which can be used on short-term surface ECGs to estimate

AV node characteristics. Information contained in the RR

series as well as in the atrial activity of the ECG are com-

bined to find the optimal model parameters. Thus, a set of

parameters related to the electrophysiological characteris-

tics of the AV node is obtained for each patient. This set

could be used to classify patients, to better plan therapy,

and to better understand the electrophysiological charac-

teristics of the AV node during AF.

2. Methods

2.1. AV node model

Atrial impulses are assumed to arrive to the AV node

according to a Poisson process with a mean arrival rate λ.

The AV node is assumed to have two possible nodal path-

ways. Each atrial impulse arriving at the AV node is supra-

threshold, i.e., it results in a ventricular contraction, un-
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less the atrial impulse is blocked. The atrial impulses are

blocked at the AV node according to the following time-

dependent probability:

β(t) =







1, x < τ

1 −
x−τ

τemax

, τ < t < τ + τemax

0, t > τ + τemax

(1)

where τ models the minimum refractory period, and τemax

the maximal prolongation of the refractory period due to

factors such as relative refractory period and concealed

conduction. An atrial impulse arriving prior to the end of

the AV nodal refractory period is blocked, while one ar-

riving after the end, but close in time to the previous ven-

tricular contraction, is more likely to be blocked. When

t > τ + τemax
, no atrial impulses are blocked. Two dif-

ferent refractory periods (τ1 and τ2), corresponding to dual

AV nodal paths, are considered, whereas τemax
is assumed

to be equal for the two paths. The probability of an atrial

impulse taking the shortest path with refractory period τ1

is given by α, 0 < α < 1; the probabilities of an atrial

impulse taking either of the two paths sums up to 1, see

Fig. 1.

Figure 1. AV node model (see text for details).

The arrival of non-blocked atrial impulses to the AV

node is assumed to be an inhomogeneous Poisson process

with arrival rate λ(1 − β(t)). Since a ventricular contrac-

tion immediately follows the first non-blocked atrial im-

pulse reaching the AV node, the probability density func-

tion (PDF) of the time x between two consecutive ventric-

ular contractions is given by

px(x) = λ(1 − β(x))e−
R

x

0
λ(1−β(τ))dτ , (2)

As a consequence of the dual nature of β(x), px(x) is

composed of two different PDFs, so that

px(x) = αpx,1(x) + (1 − α)px,2(x), (3)

where

px,i(x) = λ(1 − βi(x))e−
R

x

0
λ(1−βi(τ))dτ (4)

Inserting (1) into (4) and defining τimax
= τi + τemax

gives that

px,i(x) =















0, x < τi

λ x−τi

τemax

e
λ(x−τi)

2

2τemax , τi < x < τimax

λe

“

λτemax

2 −λ(x−τimax
)
”

, x > τimax
.

(5)

2.2. Model parameter estimation

The arrival rate λ is estimated by the AF frequency ob-

tained from the atrial activity of the surface ECG. In partic-

ular, atrial fibrillatory activity is extracted using spatiotem-

poral QRST cancellation [6]. The dominant frequency of

the resulting atrial signal is tracked using a method based

on a hidden Markov Model (HMM) [7], which produces an

optimal frequency trend from a sequence of observed fre-

quency estimates using a priori knowledge about the like-

lihood of frequency changes and the frequency estimation

method employed. For each 10-s ECG segment, one fre-

quency estimate is produced by the HMM method; λ is

obtained by averaging these estimates.

The functional refractory period τ1 is obtained from the

lower envelope of the Poincaré plot of the RR series; in this

plot each RR interval is displayed against the previous one.

It has been shown that the lower envelope of the Poincaré

plot can be used as a measure of cycle length dependence

on the functional refractory period of the AV node [8].

Briefly, the horizontal axis is divided into consecutive bins

and, for each bin, the minimal value of subsequent RR in-

terval is determined. Finally, a linear regression of the min-

imal points is performed, so that the equation for the lower

envelope of the Poincaré plot

τ1(m) = τ1min + τslopex
′

m−1, (6)

is defined, where x′

m denotes the m:th RR interval. The

linear dependence τslope is assumed to be equal for τ1 and

τ2, thus the difference between the two refractory periods

∆τ is constant.

Apart from τ1, which is independently estimated, the

model parameters, θ = [α,∆τ, τemax
] are estimated

by maximizing the joint probability px(x1, x2, . . . , xM ).
Since a ventricular contraction is triggered according to

a Poisson process, the time intervals between consecutive

ventricular contractions are independent. Therefore, the

dependences of consecutive RR intervals (x′

1, x
′

2, . . . , x
′

M )
are eliminated making use of the estimated value of τslope,

so that

xm = x′

m − τslopex
′

m−1 (7)
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Since the model assumes statistical independence of

(x1, x2, . . . , xM ), the joint probability is given by

px(x1, x2, . . . , xM ;θ) =
M
∏

m=1

px(xm;θ)

=
M
∏

m=1

(αp1,x(xm;θ) + (1 − α)p2,x(xm;θ))

(8)

where p1,x(xm;θ) and p2,x(xm;θ) are given by (4). Max-

imizing the likelihood function px(x1, x2, . . . , xM ;θ) is

equivalent to maximizing log px(x1, x2, . . . , xM ;θ); the

maximum is found using the Nelder-Mead simplex algo-

rithm [9].

3. Data

Simulated 30-minute RR series were generated using

the AV node model as described in Section 2.1. Various AV

model parameter settings were used and for each setting

100 different RR series were generated. The AV model

parameters τ1min
, τslope, α, ∆τ and τemax

are estimated

from the simulated RR series as described in Section 2.2,

while λ is assumed to be known. The mean and the vari-

ance of the estimates, as well as the average estimation er-

ror ǫ, defined as the average absolute difference between

each estimate and the actual parameter value, are com-

puted. Convergence of the estimates are tested by applying

the estimator to simulated RR series of different lengths; if

ǫ < 0.05, the estimation is considered to have converged.

The model was evaluated on 33 Holter recordings of

patients with paroxysmal or persistent AF from Phys-

iobank [10]. AF episode duration ranged between 30 min-

utes and 24 hours: episodes longer than 30 minutes were

divided into 50% overlapping segments of 30 minutes. A

total of 1282 segments were analyzed.

4. Results

The model parameters were correctly estimated from the

simulated RR series, and the estimation was found to con-

verge quite fast (about 500 RR intervals), for most simula-

tions with physiological settings of model parameters. An

example of convergence is shown in Fig. 2: all parameter

estimates converge to their true values.

Examples of unimodal and bimodal normalized RR his-

tograms, displaying the true PDF and the PDF obtained

from maximum likelihood estimation, are shown in Fig. 3.

Analyzing real data, a 97.4% of the ECG recordings

could be accurately represented by the AV model; the aver-

age normalized absolute error between the normalized RR

histogram and the estimated PDF, computed for bins of 20

ms size spaced between 0 and 2 s, was 0.0023 ± 0.0016.
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Figure 2. (left) Mean value (solid line) ± std (dotted line)

of parameter estimates of 100 simulated RR series when

using actual parameter values (dashed line) of τ1min =
0.2 s, τslope = 0.1, λ = 7 Hz, α = 0.7, ∆τ = 0.2 s,

and τemax
= 0.1 s, and (right) average absolute error of

estimates.

An error of < 0.005 was considered to reflect a sufficient

model fit.

Two different examples of normalized RR histograms

with corresponding estimated PDFs, from patients with

paroxysmal and persistent AF, respectively, are shown in

Fig. 4. The estimated AV model parameters from the

paroxysmal AF recording were τ̂1min = 0.42 s, τ̂slope =

0.061, λ̂ = 5.13 Hz, α̂ = 0.71, ∆̂τ = 0.17 s, and

τ̂emax
= 0.067 s, while the estimated AV parameters

from the persistent AF recording were τ̂1min = 0.62 s,

τ̂slope = 0.026, λ̂ = 6.34 Hz, α̂ = 0.62, ∆̂τ = 0.26 s,

and τemax
= 0.117 s. The differences in the parameters λ,

τemax
, and α between segments of paroxysmal and persis-

tent AF are consistent throughout the set of recordings, see

Tab 1.
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Figure 3. Simulated data. True and estimated PDFs

(solid line and dashed line, respectively) for the RR se-

ries (x1, x2, . . . , xM ), using the model parameter values:

(a) τ1min = 0.2 s, τslope = 0.1, λ = 7 Hz, α = 1, ∆τ = 0
s, and τemax

= 0.1 s and (b) τ1min = 0.2 s, τslope = 0.1,

λ = 7 Hz, α = 0.7, ∆τ = 0.2 s, and τemax
= 0.1 s. The

normalized histograms of the data is also displayed.
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Figure 4. Real RR data. Estimated PDFs (solid line) for

the RR series (x1, x2, . . . , xM ) obtained from 30 minutes

of (a) paroxysmal and (b) persistent AF. The normalized

histograms of the data is also displayed.

5. Conclusion

These preliminary results are encouraging, as, ideally,

for each patient a set of parameters related to the electro-

physiological characteristics of the AV node is obtained

noninvasively. This set could be used to classify AF

episodes and to better plan therapy, and obviously to better

understand electrophysiological characteristics of the AV

node during AF.
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