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Abstract

Fetal ECG (FECG) extraction from non-invasive biopo-

tential recordings is strongly affected by the intensity of

the FECG contribution to the input signals. The higher the

FECG contribution the higher the SNR and consequently

the quality of the separation. The definition of a subject-

specific good electrodes positioning is an open issue.

In this paper we present a technique based on the fetal

ECG extraction algorithm OL-JADE, which tries to invert

the whole blind extraction process only for the FECG es-

timated sources in order to estimate the FECG power at

the electrodes. Due to the recursive sample-by-sample na-

ture of the whitening stage of OL-JADE, an approximated

Least Squares solution has been introduced in the back-

projection scheme revealing adequate performance. An

optimized version of the proposed method has been inte-

grated with OL-JADE on a floating point DSP, guarantee-

ing the respect of the real-time bound.

1. Introduction

Non-invasive fetal electrocardiogram (FECG) extrac-

tion aims to achieve the fetal heart electrical activity from

the signals picked up by means of electrodes placed on

the mother’s body. Being the FECG a weak signal em-

bedded in a mixture of stronger interferences, the higher

the FECG contribution at the electrodes the higher the Sig-

nal to Noise Ratio (SNR) and then the separation quality.

Despite the quite rich literature in the field, the problem

of a signal acquisition able to emphasize the FECG con-

tribution has been overlooked as opposed to the develop-

ment of new signal processing algorithms. The robustness

with respect to the electrodes positioning of Independent

Component Analysis (ICA) techniques, compared to other

methods [1], has not fostered the research in this direction.

Only a few works deals with signal acquisition and elec-

trodes positioning (e.g. [2, 3]), in some cases selecting a

minimal subset of electrodes from a redundant one [4].

In this paper we address the problem of estimating the

FECG power contribution at the electrodes in real-time us-

ing the OL-JADE algorithm [5]. In principle, a depend-

able information in this sense could be used to iteratively

move a small set of electrodes in order to have at least 2

electrodes with adequate FECG contribution, still provid-

ing a different information with each other in order to pre-

serve the identifiability of the ICA model [6]. FECG aver-

age power estimation can be regarded as a back-projection

problem, addressed in different biomedical fields, includ-

ing the FECG processing [1,2], for other purposes than the

optimization of the separation process. An estimate of the

FECG average power at the electrodes could be achieved

“inverting” the blind extraction process only for the esti-

mated FECG sources. Since the OL-JADE on-line process

cannot be exactly inverted due to its recursive whitening

stage, we demonstrate the possibility of achieving anyway

an “inverse” of such process as a Least Squares (LS) solu-

tion. We show how this approach is effective in producing

a power ranking of the FECG contributions at the elec-

trodes in real-time on a floating point DSP.

2. Methods

ICA assumes that the linear instantaneous model

x = As, describing the combination of the sources s giving

rise to the observed signals x, can be solved for s know-

ing only a realization of x and some statistical properties

about the sources s. The solution is provided up to the

permutation and scaling ambiguities [6], the latter stating

that the variances of s remain unknown. Two-stage ICA

algorithms estimate an unmixing matrix A−1 = R · W in

2 steps, respectively providing a whitening matrix W for

the decorrelation of the observed mixtures and a rotation

matrix R able to emphasize the independent components.

The power contribution of the source sj is embedded

into the whitening matrix W, but it is still possible to esti-

mate it in every input channel as the sample variance, in-

verting the separation process only for that source:

xi =
∑

j

aijsj (1)

where i spans from 1 to the number of input signals N .

Such an approach takes the form of a back-projection at
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the electrodes of the FECG sources. It has been used in the

past to try to understand the position of the fetus [2] or for

comparative purposes [1] but, to the best of our knowledge,

not to define a subject-specific position able to optimize the

FECG contribution at the electrodes in order to improve

the separation quality.

OL-JADE [5], is a block-on-line ICA method based on

the batch JADE algorithm [7]. As the original one, it ex-

ploits a 2-stage model from which it maintains the sec-

ond stage (working on a sliding window of 1024 sam-

ples/channel, with 75% overlap). Among the different

strategies implemented in order to limit the presence of

permutations, there is the choice of a recursive sample-by-

sample whitening inspired from [8]. In this way, this stage

becomes a crucial point in the algorithm, partially respon-

sible to solve both the ICA ambiguities. The centered data

are whitened as z(t) = Wt · x(t), where x(t) is an array of

samples taken from the multi-channel input stream at the

sampling instant t, and z(t) the corresponding whitened

samples. The whitening matrix Wt undergoes a serial up-

date as Wt+1 = Wt−λt ·H(z(t))·Wt, solved in OL-JADE

[5] as in the original formulation [8].

In this case, it is not possible to invert the whole pro-

cedure exactly. In fact, whether it is possible to easily

obtain R−1 for a block of 256 samples/channel, because

the R matrix is orthogonal, so that R−1 = RT , for the

same block of data 256 matrices Wt are available, which

cannot lead to the identification of a single W−1 matrix

for the whole block in closed form. We solved this prob-

lem finding a matrix Ŵ
−1

N×N from the inverse problem

X = Ŵ
−1

· Z, where both the 256 samples/channel input

(centered) block XN×256 and sample-by-sample whitened

block ZN×256 are known. Transposing both members we

have ZT · (Ŵ
−1

)T = XT , which can be easily interpreted

as:

ZT · (Ŵ
−1

)T = ZT · [w′

1| · · · |w
′

N ] = [x′1| · · · |x
′

N ] (2)

where the column vectors x′i represent a 256-sample block

of the i-th centered input mixture, i.e. the i-th row of X.

In this inverse problem, (2) states that, for every block of

256 samples/channel, the whole block of whitened mix-

tures contributes by means of the unknowns w′

i, corre-

sponding to the i-th row of Ŵ
−1

, to the i-th input channel

x′i. The problem is now decomposed into N simpler ones

ZT · w′

i = x′i, which can be solved in parallel finding an

LS solution, since the systems are overdetermined having

256 equations and only N unknowns (with N ≪ 256).

We solved this problem by means of the associated normal

equations:

Z · ZT · w′

i = Z · x′

i (3)

It is worth to note how the matrix of the system is now

N ×N , which is advantageous for a limited memory em-

bedded system. The solution of (3) exist since Z ·ZT is not

singular if ZT is full rank, and this is assumed by hypoth-

esis because otherwise the implicit ICA constraint about

the linear independence of the N whitened signals could

not be verified. Compared to the QR factorization, the cho-

sen method allows to reduce the computational complexity

while preserving a comparable accuracy.

3. Results

To evaluate the correctness of the proposed method-

ology we used real and artificial mixtures of real sig-

nals. The real mixtures (by courtesy of Prof. L. De

Lathauwer) consist of 5 abdominal leads and 3 thoracic

ones, 60s long, sampled at 250Hz. The artificial ones are

generated multiplying by a unique random mixing ma-

trix 4 real signals, 50s long, taken from the MIT-BIH

Polysomnographic Database [9, 10] and representing the

maternal ECG (MECG), breath and EMG interference

(signal slp32) and the FECG, obtained from an adult’s

ECG (slp48) after a decimation by 2 without sampling rate

changes.

Since it is possible to assume a time-invariant mixing

also for the real dataset [11], the back-projected FECG

sources (pFECGs) estimated with the original batch JADE

can be taken as the “gold standard”. It is worth to note

that a time-variant mixing over some blocks means that

a single linear combination of the sources does not exist

within those blocks, even if a tracking algorithm such as

OL-JADE can still try to provide a possible solution avoid-

ing permutations of the estimated sources.

For the artificial dataset, the exact pFECGs are shown

in Fig. 1 whereas those estimated with OL-JADE are pre-

sented in Fig. 2. Abrupt variations in the amplitude of

the pFECGs within the same trace, for all the traces, are

clearly visible in Fig. 2. They cannot be imputed neither to

time variances (absent) nor to the approximated whitening

inversion, as we can easily show. A direct estimate of the

error related to such processing is not possible because we

are inverting the whole process for the FECG sources only.

We already argued [11] that some separation errors

are caused by a poor statistical information on the noise

sources due to the limited sliding window size of OL-

JADE. Therefore, amplitude fluctuations in Fig. 2 are

caused by the emphasis of the separation errors for a weak

source due to the back-projection that exploits imperfect

estimates of W and R. This is confirmed enlarging the

window size of OL-JADE to 4096 samples/channel. The

pFECGs are shown in Fig. 3 where, with the same whiten-

ing inversion, the amplitude fluctuations are less intense.

Moreover, a comparison with a block-by-block application

of the batch JADE algorithm with the same sliding window
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Figure 1. Exact pFECGs for the artificial mixtures.
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Figure 2. OL-JADE pFECGs for the artificial mixtures.

size of OL-JADE (hereafter called BB-JADE [11]), where

the whitening matrix can be exactly inverted, reveals in

Fig. 4 a behavior similar to the OL-JADE one. A com-

parison in terms of rms error (Fig. 5) allows to conclude

that:

• the pFECGs achieved exactly inverting the batch JADE

present the lowest error;

• the pFECGs achieved inverting OL-JADE with extended

window size show a reduction in the rms error everywhere

but the first blocks where the sample-by-sample whitening

undergoes stabilization processes;

• the pFECGs achieved inverting BB-JADE are affected

by an error which is similar (but lower) to that achievable

with OL-JADE.

The differences between OL-JADE and BB-JADE can

be imputed more to the approximated whitening, also in-

fluencing the subsequent stage, than to the LS inversion

process, which numerically we found to be quite precise

on artificial signals.

The pFECGs estimated by OL-JADE on the real dataset

(Fig. 6) exhibit variations in their amplitude as for the syn-

thetic database, for all the traces, in the block intervals (1,

14) and (28, 32). Outside such intervals, pFECG ampli-

tudes moderately oscillate in a reasonable range. Figure 7,

shows the variance of the pFECGs computed block-wise.

There can be seen that the 3 pFECGs corresponding to the

thoracic leads always present the lowest power among the
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Figure 3. OL-JADE pFECGs when using 4096 sam-

ples/channel.
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Figure 4. BB-JADE pFECGs for the artificial mixtures.
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Figure 5. pFECGs rms error for the artificial dataset.

traces, excluding the initial fluctuations in OL-JADE due

to the recursive whitening stabilization. The better behav-

ior shown by the OL-JADE version with enlarged window

size confirms that power estimation errors vanish in the in-

tervals where the OL-JADE errors were referable to a poor

statistical information on the noise sources.

The back projection algorithm, coded and optimized in

C, has been profiled on a TMS320C6713 floating point

DSP, requiring about 2.6M cycles/block. Since the over-

all memory occupation exceeds the limits of the DSP in-

ternal memory, without memory optimizations the whole

OL-JADE with back-projection now requires about 140M
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Figure 6. OL-JADE pFECGs for the real database.
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Figure 7. pFECGs variances for the real database.

cycles/block, which is largely within the real-time bound

of 307M cycles imposed by the application when running

on the chosen platform at 300MHz.

4. Discussion and conclusions

In this paper we proposed an LS approximation of the

inversion of the OL-JADE separation process, in order

to estimate the average power contribution of the FECG

sources at the electrodes. Such back-projection can be

exploited to guide a blind electrodes positioning on the

mother’s body aimed at the maximization of the SNR, be-

ing able to run in real-time on a DSP along with the OL-

JADE algorithm.

The inversion approach showed to be reliable in provid-

ing an acceptable power ranking. A special care must be

taken in order to avoid both the first seconds of registration

(due to stabilization of the recursive whitening) and the in-

tervals when the real-time separation experiences troubles

clearly identifiable in the estimated sources. Due to the

amplitude fluctuations in the back-projected sources, it is

also worth to avoid trusting the power ranking instanta-

neously, rather preferring to look at an average trend.
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