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Abstract 

The first reported observations of rare diastolic 
murmurs in patients with coronary artery disease (CAD) 
date back to the late sixties.  Subsequently several studies 
have the examined signal processing methods for 
identification of the weak murmurs. One such method is 
autoregressive (AR) models. A recent study showed that 
CAD changes the entropy of the diastolic sound. The aim 
of the current study is to analyze the relationship between 
features from an AR-model and features describing signal 
entropy. Sample entropy and the poles of AR models were 
calculated from diastolic intervals in heart sound 
recordings randomly selected from a database of 
stethoscope recordings of good quality.  In total 100 
recordings were analyzed (50 patients with two 
recordings from each). The recordings were band pass 
filtered with a 8 order Chebyshev filter with pass band 
edge frequency at 50 Hz and 500 Hz. The result shows 
that both measures equally separates the CAD patients 
from non-CAD patients, but the measures are strongly 
correlated. 

 
1. Introduction 

Coronary artery disease is the top single cause of death 
in the western world. But established diagnostic methods, 
such as coronary angiography and exercise tests, are 
costly, time consuming and they are a burden for the 
patients. Previous studies have shown that heart sounds 
may contain weak murmurs caused by turbulence in 
poststenotic blood flow in the coronary arteries and that 
this turbulence related sound is a potential diagnostic 
indicator of CAD [1]. The murmurs are rarely audible, 
but several signal processing algorithms to automatically 
detect the murmurs have been proposed [1-3]. Diastolic 
heart sounds may thus be the basis for a cheap, fast, 
noninvasive diagnostic method for CAD, with minimal 
inconvenience for the patient.  

Previous studies have examined various signal 
processing methods for identification of the weak heart 
murmurs. An established method for quantifying the 

diastolic heart sounds is autoregressive (AR) modeling of 
the diastolic sounds. Akay et al. found that poles in AR-
models of diastolic heart sounds from CAD patients 
differed from non-CAD patients [1].  The presumption for 
the application of AR-models is that the Murmur results 
from a linear stochastic process.  

Recent studies have applied methods for nonlinear 
signals to analyze various types of cardiovascular 
murmurs. For example, using the method of approximate 
entropy Akay et al. found that CAD increases the entropy 
of the diastolic heart sound[3]. The advantage of such 
methods is their ability to handle nonlinear dynamics. 
Power spectra methods such as AR-models will not 
separate nonlinear and linear processes since the phase of 
the signal is required for identification of nonlinearity in 
the frequency domain.  

In a recent study [4,5] no evidence of nonlinearity in 
cardiovascular murmurs was found since the murmurs 
showed great similarity with a linear stochastic process. If 
the murmur can be described as a linear stochastic 
process its statistical properties are fully described by its 
power spectrum and the nonlinear methods will not yield 
additional information. 

The aim of the current study is to examine if sample 
entropy yields additional information related to 
classification of CAD compared to AR-models. Sample 
entropy is a measure of signal regularity, similar to 
approximate entropy, but less sensitive to the length of 
signal [6]. 

 

2. Method 

2.1. Data collection 

 Two heart sound recordings from each of 50 patients 
(100 recordings in total) were randomly selected from a 
database of heart sounds recorded from patients referred 
for coronary angiography at the Department of 
Cardiology at Aalborg Hospital. The recordings were 
made from the left 4th intercostal space on the chest of 
patients using a commercially available electronic 
stethoscope (3M Littmann E4000). Coronary angiography 
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images from the patients were analyzed with quantitative 
coronary angiography. Patients with at least one diameter 
reduction of more than 50% were defined as CAD 
subjects and the remaining patients were defined as non-
CAD subjects. Inclusion criteria were normal heart 
rhythm and recordings being free of significant noise. 

 
2.2. Preprocessing  

The recordings were automatically segmented into 
diastolic and systolic periods using the duration 
dependent hidden Markov model develop by the current 
authors[7,8]. The second heart sound plus 20 ms was 
excluded from the diastolic period to avoid influence of 
the second heart sound. The diastolic periods were 
forward-backward band-pass filtered with a 4th order 
Chebyshev filter with pass-band edge frequencies at 50 
Hz and 500 Hz. 

Heart sound recordings obtained with a handheld 
stethoscope often are contaminated with noise spikes 
caused by friction between the stethoscope and the skin. 
To avoid the noise spikes the sub-segmentation method 
by Schmidt et al. [2] was applied before extraction of the 
AR-poles and the Sample entropy. The sub-segmentation 
method divided the diastolic periods into sub-segments of 
short duration and removed sub-segments with high 
variance. In the current implementation the duration of 
the sub-segments was 512 samples (128 ms) and the 
threshold for the allowed variance in the sub-segment was 
3 times the median variance of all sub-segments. 

 

Figure 1. Typical heart sound recording illustrating first 
(S1) and second heart sound (S2). 

 
2.3. Sample Entropy 

Sample entropy depends on reconstruction of the m 
dimension phase space. The phase space of a multi 
dimensional dynamic system may be reconstructed from a 
single-dimension signal using the delay method, where 
each point in the reconstructed phase space consists of a 
vector of m signal points, sampled from the signal at 
intervals Ĳ:. 

 ܺ ൌ ሾݔሺݐሻǡ ାఛሻǡݐሺݔ ǥ Ǥ ାሺିଵሻఛ൯ሿ்ݐ൫ݔ  
 

Sample entropy is the negative logarithm of the 
conditional probability that a point which repeats itself 
within a tolerance of 催 in an m dimensional phase space 
will repeat itself in an m+1 dimensional phase space.  

ሺ݉ǡ݊ܧ݉ܽܵ  ሻߝ ൌ െ    ቆ ሺ  ͳǡ ɂሻ ሺ ǡ ɂሻ ቇ 

 
C(m, İ) is the number of repeating points in the m 
dimensional phase space. Repeating was defined as points 
closer in a Euclidean sense than İ to the examined point. 
Sample entropy were calculated using two different 
tolerances İ=0.2 and İ=0.5 times the standard deviation of 
the signal. To fully represent the dynamic system, the 
embedding dimension, m, and embedding delay, Ĳ, must 
be proper. In the current study a systematic approach was 
applied, by calculating the embedding matrix for Sample 
entropy with several combinations of embedding 
dimensions and embedding delays and afterward the main 
components was extracted using principle component 
analysis (PCA). Sample entropy was calculated with 
embedding dimensions from m =2 to 8 and embedding 
delays Ĳ=1, 3, 5, 8, 12. In total 70 features were calculated 
using sample entropy. 

 
2.4. AR-models 

The presumption of the AR model is that each sample 
of the signal is an expression of a linear combination of 
the previous samples plus noise. ݕሺ݊ሻ ൌ െܽ ሺ݊ݕ  െ ሻ  ݁ሺ݊ሻெ

ୀଵ  

where y(n) is the signal to be modeled,  ap are the model 
coefficients, M is the model order and e(n) is the noise 
which is independent from the previous samples.  In the 
current application the coefficients of the AR-model were 
adjusted with the forward-backward method to maximize 
the models capacity to model the signal. The features 
were calculated as the pole magnitudes and the pole 
angles of the coefficients. The AR features were 
calculated using model orders of M=2, 4, 6, 8, 10, 12. In 
total 42 features were calculated from the AR-models.  
 
2.5. Comparison of AR-poles and sample 

entropy 

The purpose of the analysis is to compare the 
classification potential and the relation between the two 
types of features. The similarity between AR and sample 
entroy  migth not be expressed between two single 
features. Therefor were the dominating components 
extracted from the two feature groups by PCA.The 
classification performance of the six most dominating 
PCA components was analyzed.   
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Figure 2. Receiver operating characteristic (ROC) of the 
1st PCA components 

 
The classification performance was measured as the 

area under the receiver operating characteristic (AUC). 
The receiver operating characteristic (ROC) was 
calculated using the Wilcoxon non-parametric method 
and the 0.95% confidence intervals (CI) were calculated 
using a bootstrapping method for repeated measurement 
[9]. The significance levels used in the the estimation of 
the CI were Bonferroni corrected to account for the high 
number of features.   

The difference between the AUC two measures was 
calculated by subtraction of the two measures and the CI 
intervals for the area differences was estimated with the 
U-statistics approach by DeLong et al. [10]. 
 
3. Results 

In both feature groups the first principle component 
was the component with the best classification potential, 
the AUC was 0.719 (CI: 0.53-0.88) for the 1st principle 
component of the AR features and 0.743 (CI: 0.57-0.89) 
for the 1st principle component from Sample entropy, see 
figure 2. The difference between the two areas was 0.024 
(CI:-0.046-0.095). Since zero was in included in the 
confidence interval the difference between the areas was 
not significant.  

The correlation between the two components was -
0.88, see figure 3. Table 1 lists AUC for the 6 dominating 
components from each feature type. 

Figure 3. Scatter plots of the relationship between the 1st 

PCA components of each feature type.  
 

Table 1. The AUC and the cumulative eigenvalues for the 
6 dominating PCA components from both AR- and 
Sample entropy. 

   
PCA component  
 

AUC  
 

Cumulative 
eigenvalues 

AR-PCA1  0.72 0.39 
AR-PCA2 0.55 0.56 
AR-PCA3 0.57 0.69 
AR-PCA4 0.50 0.81 
AR-PCA5 0.51 0.85 
AR-PCA6 0.60 0.90 
SE-PCA1  0.74 0.85 
SE-PCA2 0.57 0.89 
SE-PCA3 0.52 0.91 
SE-PCA4 0.58 0.93 
SE-PCA5 0.55 0.94 
SE-PCA6 0.60 0.95 

 
 

4. Discussion  

PCA components from both the AR-models and 
sample entropy identified a significant difference between 
CAD and non-CAD subjects. There was no significant 
difference between the classification performance of 
sample entropy and the AR-model and the correlation 
between the best features from each of the two groups 
was high. This indicates that Sample entropy and the AR-
poles are equivalent in the current data and that sample 
entropy is not affected by a significant nonlinear 
component. 
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In conclusion, the current study compares sample 
entropy’s capability to separate CAD patient from non-
CAD patients with features from AR-models. The result 
shows that both measures equally separate CAD patients 
from non-CAD patients, and that the measures are 
strongly correlated. The information gained by 
complementary use of both features may thus be limited. 
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