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Abstract

We investigate several entropy based approaches to find-

ing cut points for discretizing continuous ECG-based risk

metrics. We describe two existing approaches, Shannon

entropy and asymmetric entropy, and one new approach,

warped entropy. The approaches are used to find cut points

for the end point of cardiovascular death for three risk met-

rics: heart rate variability (HRV LF-HF), morphological

variability (MV) and deceleration capacity (DC). When

trained on multiple instances of training set containing

2813 patients, warped entropy yielded the most robust cut-

offs.

The performance of the cutoffs obtained using warped

entropy from the training sets was compared with those

in the literature using a Naive Bayes classifier on corre-

sponding test sets. Each test set contained 1406 patients.

The resulting classifier resulted in a significantly (p<0.05)

improved recall rate at the expense of a lower precision.

1. Introduction

In medicine, multiple risk metrics are used to evaluate

the risk profile of a patient. These risk metrics consist of

both continuous (e.g. age) and categorical (e.g. history

of diabetes) variables. From a clinical perspective, catego-

rization of continuous variables into high risk, medium risk

and low risk is useful since it offers a simple risk stratifi-

cation tool for both physicians and patients. Furthermore,

many machine learning algorithms generate better models

when discretized variables are used [1].

The purpose of discretization is to identify cutoffs that

partition a sequence of values into subsequences that ex-

hibit good class coherence. Supervised discretization

methods use class information during the discretization

process [1]. Several supervised discretization approaches

are based on measuring class entropy of a sequence. Class

entropy of a sequence is a measure of uncertainty of the

class labels of the examples that belong to the sequence.

It is a measure of information where a lower value of en-

tropy corresponds to higher amount of information. En-

tropy based discretization algorithms evaluate each candi-

date cut point based on a joint measure of the entropy of

the two resulting subsequences generated by the cut point.

For the endpoint of cardiovascular death (CVD), deaths

(positive outcome) are much less represented in the

datasets than non-deaths (negative outcome). If one uses

the traditional Shannon entropy for discretization in such

highly unbalanced datasets, a subsequence with an equal

class distribution of positive and negative outcomes is as-

signed the maximum uncertainty value of 1. However, for

highly unbalanced datasets, such a subsequence actually

contains a lot of information. It suggests that patients who

belong to the subsequence are at extremely high risk of

cardiovascular death.

In this paper we present a novel supervised entropy

based discretization method that handles unbalanced data.

In Section 2, we present a general outline of our proposed

discretization algorithm. In Section 3, we discuss differ-

ent types of entropy measures. In addition to Shannon

entropy, we present asymmetric entropy and a new mea-

sure, warped entropy. In Section 4, we evaluate each of

the entropy measures in terms of stability of the cutoffs

identified. The evaluation is for the endpoint of CVD in

a population of roughly 4, 000 patients. Next, we com-

pare the cutoffs derived from warped entropy with those

found in the literature based on the performance of a Naive

Bayes classifier on recall and precision. The Naive Bayes

classifier built using cutoffs derived from warped entropy

yielded a significantly (p<0.05) higher recall and lower

precision than the classifier built using the literature cut-

offs. Finally, in Section 5, we present some conclusions

and recommendations for further research.

2. Proposed discretization algorithm

Let V be a continuous variable and Ω be a sequence of

N examples sorted in an ascending order of the continuous

variable. Each example is a pair [v, l] where v is a value of

the continuous variable and l is the class label.

We find the midpoint of the value of variable V for each

successive pair of examples in Ω. These midpoint values

are the candidate cut points. Each candidate cut point C
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partitions Ω into two sequences, Ω1 and Ω2, where Ω1

contains examples with v < C and Ω1 contains exam-

ples with v > C. Next, we find the class entropy of each

subsequence Ωj using an entropy measure. We then use

Weighted Joint Entropy (WJE) to evaluate the quality of

the partition generated by a candidate cut point C:

WJE(C,Ω) =
|Ω1|

|Ω|
H(Ω1) +

|Ω2|

|Ω|
H(Ω2) (1)

where H is an entropy measure.

The C that minimizes WJE(C,Ω) is selected as the cut

point for binary discretization for Ω.

Equation 1 can be easily generalized to generate n cut-

offs. However, the size of the set of candidate cutoffs is of

size O(Nn). However, since N is typically very large, we

instead use a greedy approach. To find n cutoffs for n > 1,

we first perform a binary split on the entire sequence Ω to

identify the first cutoff. To find the next cutoff, we iden-

tify the subsequence ΩMaxEnt of Ω which has the max-

imum class entropy (uncertainty). A binary split is then

performed on the subsequence by picking the cutoff that

minimizes WJE(C,ΩMaxEnt). This process is repeated

until n cutoffs are found.

We use a Bagging (Bootstrap aggregating) algorithm in

an attempt to avoid over-fitting. Given a sample sequence

of size N , bagging generates r new training sequences,

also called replicates, of size N by uniformly sampling

examples with replacement from the original sample se-

quence [2]. Once the cutoffs for all the replicates are iden-

tified for a fixed number of cutoffs n, we take the median

of the distribution to identify the final cut point.

3. Entropy measures

We tried this approach using a symmetric entropy mea-

sure (Shannon entropy) and two different types of non-

symmetric entropy measures (asymmetric entropy and

warped entropy). The entropy measures can be general-

ized to the case of k class labels, however, we restrict our

discussion to two class labels for ease of explanation.

3.1. Shannon entropy

Shannon entropy [3] is the most commonly used entropy

measure. Let the class-label variable L take two different

values, with probabilites p1 and p2 respectively. The Shan-

non entropy of a subsequence S, with class distribution

p1(S) and p2(S) is given by

H(S) = −p1(S).log2p1(S) − p2(S).log2p2(S) (2)

Since Shannon entropy is a symmetric measure, it is

maximized when the two classes in a S are present in equal

proportions (Figure 1).

3.2. Asymmetric entropy

For the binary class case, the asymmetric entropy mea-

sure of a subsequence S derived from a parent sequence P

is given by,

H(S, P ) =
p1(S).p2(S)

(−2.z1(P ) + 1).p1(S) + (z1(P ))
2 (3)

where, p1(S) and p2(S) are defined as in Section 3.1. The

variable z1 is a function of the parent sequence P such that

z1(P ) = p1(P ). The value of z1 determines the asymme-

try of the entropy measure. Specifically, for a given par-

ent sequence P , the function H(S, P ) is maximized when

p1(S) = z1(P ).
By setting z1 to the probability of class 1 in the parent

sequence, we are essentially considering the distribution

of the parent sequence to be the most uninformative. Any

subsequence with p1(S) = z1(P ) has the same distribu-

tion as the parent sequence. Therefore, it does not provide

any additional information and is assigned the maximum

entropy value of 1 (Figure 1).

The concept of asymmetric entropy was first introduced

by Zighed et.al. [4].

3.3. Warped entropy

This entropy measure is a modified version of Shannon

entropy (Section 3.1). In Section 1, we motivate the con-

cept of asymmetry based on the fact that the prior distri-

bution of classes is highly unbalanced in many medical

datasets. One way to deal with the class imbalance is to

assign greater weights to examples from the minority class

than those from the majority class so that the distribution

of the weighted samples is balanced.

The warped entropy measure of subsequence S derived

from a parent sequence P is given by,

H(S, P ) = −

2∑

l=1

p∗l (S, P ).log2p
∗

l (S, P ) (4)

where,

p∗l (S, P ) =
pl(S).wl(P )

w1(P ).p1(S) + w2(P ).p2(S)
(5)

The variables w1 and w2 are weights assigned to examples

of class 1 and 2 respectively. Specifically, wl(P ) = z1(P )
zl(P )

where zl(P ) = pl(P ), as defined in Section 3.2.

4. Experimental evaluation

We tested our method on data from the MERLIN-TIMI

36 trial [5]. We used data from 4219 non-ST elevation
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Figure 1. Entropy measures.

acute coronary syndrome (NSTEACS) patients and con-

sidered cardiovascular death within 90 days as an endpoint.

There were 82 ( 2%) cardiovascular deaths within 90 days.

Three electrocardiographic (ECG) risk metrics: heart rate

variability (HRV) [6] , deceleration capacity (DC) [7] and

morphological variability (MV) [8] were computed from

the first 24 hours of ECG recording. For HRV, we com-

puted HRV-LF/HF [6].

In our experiments, each training set contains 2813 pa-

tients; its corresponding test set contains a disjoint set of

1406 patients.

First, we evaluated the stability of the cutoff value gen-

erate using different entropy measures. We generated 100

instances of disjoint training and test sequences. We im-

plemented the discretization algorithm on each training se-

quence using r=100 replicates for bagging to generate a

binary split. The coefficient of variance (COV) for a sin-

gle cutoff using different entropy measures are shown in

Table 1. The worst (highest) COV among the three ECG

measures for each entropy measure is highlighted in the

table.

Table 1. Coefficient of variance for a single cutoff using

different entropy measures

Coefficient of variance

Risk Metric Shannon Asymmetric Warped

DC 0.11 0.36 0.15

HRV LF-HF 0.31 0.18 0.15

MV 0.06 0.06 0.14

The high instability exhibited by the asymmetric en-

tropy measure was caused by its sensitivity to outliers.

The outlier sensitivity can be explained by the shape of the

asymmetric entropy function when a dataset is highly un-

balanced, as shown in Figure 1. The asymmetric entropy

curve falls sharply as p1(S) approaches 0 from p1 = z1 =
0.05, but the rate of decrease is slow when we move away

from the maximum entropy point towards p1 = 1. The

latter property causes the entropy (uncertainty) to still be

high for p1 > z1. Therefore, the evaluation function fa-

vors cutoffs where one of the subsequences has p1 < z1.

This makes this measure susceptible to outliers from the

minority class.

The high instability shown by cutoffs derived from

Shannon entropy measure (Table 1) can be attributed to

the fact that it places equal weights on both minority and

majority examples despite their unbalanced prior distribu-

tion.

Next, we compared the cutoffs found using an entropy

measure with those found in the literature (Table 2). Be-

cause of the robust performance of warped entropy com-

pared to other entropy measures, only the warped entropy

measure is used for this experiment. For this experiment,

we used 100 instances of disjoint training and test se-

quences. For discretization, we used r = 100 replicates

of a training set.

Table 2. Cutoffs for the ECG based risk metrics

Cutoffs

Risk Metric Literature Warped

DC 2.5 , 4.5 4.0, 6.0

HRV LF-HF 0.95 2.0

MV 50 40

We built two Naive Bayes (NB) classifiers1 [9] from

each of the training sequences using the cutoffs from the

literature for one and the cutoffs derived using the warped

entropy measure for the other. A NB classifier is a prob-

abilistic classifier. Therefore, for each example in the test

set, it generates a probability of death given the values of

all three risk metrics: DC, HRV and MV. We used the death

rate of the population ( 2%) as the threshold such that pa-

tients with probability of death>2% were considered as

high risk.

The performance of the NB classifiers built from the

training sequences were evaluated on the corresponding

test sequences based on recall and precision on the minor-

ity class:

Recall =
true positives

true positives + false negatives
(6)

Precision =
true positives

true positives + false positives
(7)

1The NB classifier was built using Bayes Net Toolbox by Kevin Mur-
phy available at http://code.google.com/p/bnt/.
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The number of cutoffs derived using the entropy mea-

sure was the same as those used in the literature for risk

stratification for cardiovascular deaths. Table 3 shows the

mean performance of the NB classifier on the 100 in-

stances of test sequences as measured by recall and mean

precision. Based on a paired-sample t-test [10], the warped

entropy cutoffs yielded a significantly (p<0.05) higher re-

call but a lower precision than the cutoffs in the literature.

Table 3. Mean±std(standard deviation) of Recall and Pre-

cision of the NB classifier built using the same number of

cutoffs as in the literature. The percentage in the parenthe-

ses next to each method is the mean percentage of patients

that were labelled as high risk in the test sequence.

Recall Precision

Method Mean±std Mean±std

Literature (27%) 0.59± 0.08 0.044±0.005

Warped (36%) 0.68±0.09 0.037±0.005

5. Conclusions

In this paper, we presented a discretization algorithm

that uses weighted joint entropy as an evaluation func-

tion. In addition to Shannon entropy, we presented two

alternative non-symmetric measures of entropy, asymmet-

ric and warped. The non-symmetric measures take into ac-

count the imbalance in the prior distribution of classes in

the dataset. We discretized three popular continuous ECG

based risk metrics using each of the three entropy mea-

sures. Warped entropy yielded the most robust cutoffs.

We also compared the cutoffs derived using warped en-

tropy with those found in the literature by evaluating the

performance of the Naive Bayes classifier built from dis-

cretized training data. When the same number of cutoffs

were found using warped entropy as those found in the

literature, warped entropy yielded different cutoffs than

reported in the literature. The NB classifier built using

warped entropy cutoffs yielded a significantly (p<0.05)

better recall rate than the classifier built using the literature

cutoffs. But the improved recall rate was obtained at the

expense of lower precision. Therefore, it is inconclusive

whether cutoffs yielded using warped entropy are better or

worse than the literature cutoffs.

It is important to note that the number of cutoffs used

in the literature might not be optimal when using warped

entropy for discretization. As future work, we plan to

develop an appropriate stopping criteria that can be inte-

grated with our proposed discretization algorithm so that

it can automatically determine the appropriate number of

cutoffs based on the characteristics of the data.
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