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Abstract 

This work explored two methodologies for clustering 

independent components (ICs) into physiological groups 

corresponding to maternal respiratory (MR), maternal 

cardiac (MC), foetal cardiac (FC), or noisy (N) activities. 

The methods, based on frequency content (S) or time-

structure (R) analyses, were tested on 750 ICs (extracted 

from 25 abdominal phonograms by using single-channel 

independent component analysis, SCICA). Results showed 

that the S-based methodology is more reliable at 

clustering similar ICs than the R-based method. On the 

other hand, the R-based methodology not only clusters 

ICs, but also identifies their physiological origin, which is 

a desired quality. These characteristics make both 

schemes interesting for automatic and fast classification 

of ICs extracted from the abdominal phonogram. These 

results were so promising that current work has already 

combined both methods into an enhanced version for 

grouping physiological ICs extracted by SCICA. Future 

work will analyse foetal traces for well-being information 

recovery. 

 

 

1. Introduction 

Antenatal foetal surveillance is an important part of 

foetal care since it makes it suitable for obstetricians to 

assess foetal well-being, diagnose a possible disease 

earlier, and increase effectiveness of treatment before 

delivery [1]. At present, such surveillance strongly relies 

on ultrasonography, which is an unsuitable method for 

long-term monitoring and foetal distress prediction since 

long exposure to ultrasound radiation may harm the 

foetus [2-3]. Alternatively, some works monitor foetal 

activity by using phonography [3-4], which consists of 

positioning a sensitive acoustic sensor on the maternal 

abdomen. This technique, which is suitable for long-term 

monitoring [3], produces the abdominal phonogram, a 

signal rich in foetal information (e.g. heart sounds, heart 

rate, and breathing/body movements) and therefore 

appropriate for assessing well-being [4-6]. Unfortunately, 

since the acoustic energy of the foetal components is very 

low, they are easily hidden by environmental, maternal, 

and “shear” noises [1], which turns the extraction of 

reliable information into a difficult and challenging task.  

In previous work, single-channel Independent 

Component Analysis (SCICA) was used to successfully 

separate out the phonogram into independent components 

(ICs) due to foetal, maternal, and noise activities [1,7]. 

However, recovery of reliable information requires not 

only good separation, but also appropriate classification 

of ICs of interest. This means that, in order to retrieve 

meaningful traces of the sources underlying the 

abdominal phonogram, similar ICs must be correctly 

clustered in physiological groups corresponding to 

maternal respiration (MR), maternal cardiac (MC), foetal 

cardiac (FC), or noise (N) activities.  

At present, some studies in the literature have visually 

defined similarity and manually grouped physiological 

components [8-11], which is not only a subjective but 

also a time-consuming task due to the usually large 

number of components to be classified. As an alternative, 

some studies have proposed automatic methods to group 

similar ICs based on time and/or frequency content 

[1,7,12-14], entropy [15], or mutual information [16]. The 

methods based on time/frequency content are easy to 

implement and fast to execute, but may perform poorly 

[1,12]. On the other hand, the methods based on entropy 

and mutual information perform better, but are slower to 

execute because of larger computational loads [15-16]. 

In this work, we considered that grouping can be 

reliable and yet efficiently performed as long as the right 

ICs attribute(s) are used. To do so, and based on our 

observations at processing the abdominal phonogram, two 

notorious and accessible features of its physiological ICs 

were studied: (a) their disjoint spectral content (given by 

the nice spectral decomposition achieved by SCICA in 

[7]) and (b) their wealthy time-structure (given by 

rhythmic regulatory processes underlying the abdominal 
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phonogram). Thus, this work explored two methodologies 

for grouping the physiological ICs extracted in [7], one 

based on frequency content analysis and another based on 

time-structure analysis. The next sections describe the 

dataset, the methodologies implemented to group similar 

ICs, and their performance evaluation. Then, results are 

presented and discussed before conclusions are given. 

 

2. Dataset 

The dataset was composed of ICs extracted from 25 

single-channel abdominal phonograms by SCICA (based 

on Temporal Decorrelation source SEParation, TDSEP) 

as detailed in [7]. The signals were recorded over 3 or 5 

minutes from pregnant women at gestational ages 

between 29 and 40 weeks. The sampling frequency was 

500 Hz and, whenever possible, the abdominal ECG was 

simultaneously recorded as a reference.  

The ICs dataset was built up by taking three segments 

(10 s in length) from each phonogram, one at the start, 

one in the middle, and one at the end. Each segment was 

separated out into 50 ICs by SCICA-TDSEP [7]. Next, 

from each decomposed segment, 10 ICs more likely to be 

physiological components were selected, which gave rise 

to a total of 750 ICs in the dataset. In addition, each IC 

was visually categorised as MR, MC, FC, or N, which 

created the reference to quantify the methodologies 

performance. 

 

3. Methods 

Figure 1 sketches the two stages followed by both 

methodologies to cluster similar ICs. Firstly, an index 

was calculated, either on frequency content (S) or on 

time-structure (by rhythmicity calculation, R). Secondly, 

depending on the index value, ICs were automatically 

classified as MR, MC, FC or N.  
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Figure 1. Stages followed to cluster ICs into groups such 

as maternal respiration (MR), maternal cardiac (MC), 

foetal cardiac (FC), or noise (N). Based on (a) frequency 

content analysis and (b) time-structure analysis. 

 

3.1. Quantifying features 

Each methodology calculated its index by processing 

every IC as follows: 

A. Frequency content index (S): 

Calculated from the PSD, it was estimated using the 

Welch’s method with a Hanning window, 32 coefficients 

and 50% overlap. Then, from the characteristic and well 

defined single-peak in the resulting spectrum [7], as 

illustrated in figure 2, its central frequency was taken as 

the frequency content index (S) of the IC. 

 

 
Figure 2. Steps followed by each methodology to quantify 

the IC features. Filled arrows: calculation of an index on 

frequency content (S), blank arrows: calculation of an 

index on time-structure (R). 

 

B. Rhythmicity index (R): 

It was calculated by autocorrelation analysis, which is 

a suitable tool to examine the rhythmic patterns in a time-

series (i.e. time-structure). First, an IC envelope was 

generated by the Hilbert Transform, which has proven to 

be functional for signals whose envelope is slow 

compared to the signal variations. Next, the envelope was 

detrended and normalised to produce en. Second, the 

autocorrelogram of en was calculated as 

( ) ( ) ( )*

ee n nr e t e t dtτ τ
∞

−∞
= +∫ , where e

*
n is the complex 

conjugate of en. Third (except for IC50, which mainly 

encloses MR), ree was filtered between 0.7 and 3.1 Hz. 

This produced rf, a signal free of harmonic effects due to 

MR and FC rhythms that easily lead to errors at 

calculating R. Fourth, to ease the estimation of R, rf was 

transformed into a frequency domain representation by 

the Welch´s periodogram with a Hanning window and 

50% overlap. Here, knowing that the filtering only left 

cardiac rhythms in rf (maternal and/or foetal), we chose a 

window length that enclosed a suitable amount of them. 

Thus, a length of 2048 samples was used to include an 

average of four maternal and/or eight foetal heart beats. 

Finally, from this autospectrum, as shown in figure 2, the 

frequency of the dominant peak was taken as the 

rhythmicity index (R) of the IC. 

 

3.2. Defining similarity 

The values of S and R were used by the corresponding 

methodology to categorise the IC as MR, MC, FC or N 

according to the ranges in table I. Those ranges were 

defined based on empirical observation (for the frequency 

content analysis) and on physiological rates (for the time-

structure analysis). 
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Table I. Intervals used for categorising ICs according to 

their (a) frequency content (S) or (b) time-structure (R). 

 

Category S (Hz) R (Hz) 

  Foetal cardiac (FC) (19.0 – 44.5] (1.7 – 3.0] 

  Maternal cardiac (MC) [2.0 – 19.0] [0.8 – 1.7] 

  Maternal respiratory (MR) (0.0 – 2.0) [0.1 – 0.6] 

  Noise (N) > 44.5 --- 

 

3.3. Testing performance 

Once the methodologies clustered the dataset into 

physiological groups, their performance was evaluated by 

comparing their results with the reference. This was done 

by quantifying sensitivity (Se) and specificity (Sp) as 

Se=TP/(TP+FN) and Sp=TN/(TN+FP) respectively, 

where TP, FN, TN, and FP are respectively the number of 

true positives, false negatives, true negatives, and false 

positives. Here it is important to mention that the cardiac 

ICs are the most difficult components to be classified and, 

since their misclassification distorts considerably the 

foetal information retrieved, our evaluation only focused 

on the methods performance at distinguishing between 

foetal and maternal cardiac ICs. 

 

4. Results 

Figure 3 illustrates ten physiological ICs (extracted 

from the same segment by SCICA) along with the 

indexes representing their frequency content (S) and time-

structure (R). As can be seen, the frequency content index 

of such ICs is below 50 Hz, being IC50 and IC41 the ICs 

with the lowest and highest values respectively, 

behaviour consistently observed along the dataset. 

Regarding the time-structure index, these particular ICs 

presented four rhythms: 2.0 Hz in IC41, 2.3 Hz in IC42-

IC47, 1.2 Hz in IC48-IC49, and 0.24 Hz in IC50. Thus, 

according to these values, similar ICs were automatically 

categorised by the S-based methodology as: IC47-IC49 in 

MC and IC42-IC46 in FC. On the other hand, the same ICs 

were categorised by the R-based methodology as: IC48-

IC49 in MC and IC41-IC47 in FC. Notice that S pointed at 

IC41 as N, and IC47 and IC50 as MC, whereas R pointed at 

IC41 and IC47 as FC, and IC50 as MR. 
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Figure 3. Ten physiological ICs along with their 

frequency content (S) and time-structure (R) indexes. 

Figure 4 depicts the sensitivity (Se) and specificity (Sp) 

of both methodologies to categorise cardiac ICs as foetal 

or maternal. As can be seen, the optimal value (i.e. the Se-

Sp intersection) achieved by the S-based methodology 

(0.9 at 18.8 Hz) is larger than the value achieved by the 

R-based methodology (0.7 at 1.6 Hz). 
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Figure 4. Performance at categorising cardiac ICs as 

foetal or maternal by methods based on (a) frequency 

content analysis and (b) time-structure analysis. The 

dash-dot vertical line indicates the optimal threshold. 

 

Figure 5 depicts a segment of noisy abdominal 

phonogram and the estimates of the independent sources 

retrieved using the ten physiological ICs clustered by the 

S-based methodology in figure 3. From top to bottom, the 

time and frequency representations of: the abdominal 

phonogram, three physiological traces (FC, MC, and 

MR), the noise/noisy trace, and the abdominal ECG (only 

as a reference) are shown.  
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Figure 5. A noisy abdominal phonogram and the 

physiological sources retrieved using ten ICs clustered by 

the S-based analysis. From top to bottom: the phonogram, 

three physiological traces, the noise/noisy trace, and the 

abdominal ECG (as a visual reference).  

 

As can be seen, the abdominal phonogram clearly 

shows a slow component, but the signal is so noisy that it 

is virtually impossible to be certain about any 

physiological information, especially of foetal origin. On 

the contrary, the retrieved traces clearly show not only 

narrower bandwidths, but also different physiological 

rhythms, which is very clear in both, time and frequency 

domains. Furthermore, since FC and MC are clearly 
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aligned with foetal and maternal QRS complexes 

respectively, it can be said that (a) FC represents the 

foetal heart sounds (FHS), whereas (b) MC represents the 

maternal cardiovascular activity (i.e. pulse wave and/or 

HS). Regarding MR, which is the trace with the narrowest 

frequency content and largest amplitude, it presents the 

slowest rhythm due to the maternal respiration. Finally, 

N, the trace with the largest frequency content index and 

composed of multiple rhythms that could distort valuable 

information by introducing noise or noisy components.  

 

5. Discussion and conclusions 

This work explored two methodologies for measuring 

physiological similarity between ICs extracted from the 

abdominal phonogram by SCICA. The methods, based on 

(a) frequency content analysis or (b) time-structure 

analysis, efficiently clustered ICs into physiological 

groups related to maternal respiratory (MR), maternal 

cardiac (MC), foetal cardiac (FC), or noise activities (N). 

Compared with other schemes, these methods are fast 

and easy to implement since they are based on 

autocorrelation and/or spectral analysis. On a PC with a 

Core2 Duo processor at 2.40 GHz, they took a few 

seconds to process and cluster ten ICs, whilst the 

implementation in [15] took almost 800 s only to 

calculate their Sample Entropy. In particular, since the S-

based methodology performed better than the R-based 

one, S seems to be more reliable than R to recognise 

similar ICs. On the other hand, R is more complete since 

rhythmicity not only finds similar ICs, but also identifies 

their physiological origin, which is a desired quality. 

Thus, both methodologies present characteristics that 

make them promising for automatic and efficient 

classification of ICs extracted from the abdominal 

phonogram. Actually, the combination of these two 

approaches already gave rise to a new scheme for 

classification of the physiological ICs extracted by 

SCICA [17]. Ongoing work is analysing the retrieved 

foetal time-series to recover information for well-being 

surveillance. 

 

Acknowledgements 

A. Jimenez-Gonzalez thanks CONACyT for 

sponsoring her PhD studies.  

 

References 

[1] Jiménez-González A, James CJ. Extracting sources from 

noisy abdominal phonograms: a single-channel blind source 

separation method. Med. Biol. Eng. Comp. 2009;47:655-

64. 

[2] Barnett SB. Intracranial temperature elevation from 

diagnostic ultrasound. Ultrasound Med. Biol. 

2001;27(7):883-8. 

[3] Holburn DM, Rowsell TD. Real time analysis of fetal 

phonography signals using the TMS320. In: IEE Colloq. 

Biomedical Applic. Digital Signal Process. 1989. London, 

UK, 1989;7/1-12. 

[4] Colley N, Talbert DG, Southall DP. Biophysical profile in 

the fetus from a phonographic sensor. Eur. J. Obstet. 

Gynaecol. Reprod. Biol. 1986;23:261-6. 

[5] Zuckerwar AL, Pretlow RA, Stoughton JW, et al. 

Development of a piezopolymer pressure sensor for a 

portable fetal heart rate monitor. IEEE Trans. Biomed. Eng. 

1993;40(9):963-9. 

[6] Goovaerts HG, Rompelman O, Van Geijn HP. A transducer 

for detection of fetal breathing movements. IEEE Trans. 

Biomed. Eng. 1989;36(4):471-8. 

[7] Jimenez-Gonzalez A, James CJ. Source separation of foetal 

heart sounds and maternal activity from single-channel 

phonograms: a temporal independent component analysis 

approach. Computers in Cardiology 2008; 35:949-52. 

[8] Zarzoso V, Nandi AK. Noninvasive fetal electrocardiogram 

extraction: blind separation versus adaptive noise 

cancellation. IEEE Trans. Biomed. Eng. 2001;48(1):12-8. 

[9] Jimenez-Gonzalez A, James CJ. Blind Source Separation to 

extract foetal heart sounds from noisy abdominal 

phonograms: a single channel method. In: IET Advances in 

Medical, Signal and Information Processing 2008. Santa 

Margherita Ligure, Italy, 2008;4:1.1.4. 

[10] Comani S, Mantini D, Pennesi P, et al. Independent 

component analysis: fetal signal reconstruction from 

magnetocardiographic recordings. Comput. Methods 

Programs Biomed. 2004;75:163-77. 

[11] Comani S, Mantini D, Lagatta A, et al. Time course 

reconstruction of fetal cardiac signals from fMCG: 

independent component analysis versus adaptive maternal 

beat subtraction. Physiol. Meas. 2004;25:1305-21. 

[12] Mantini D, Alleva G, Comani S. A method for the 

automatic reconstruction of fetal cardiac signals from 

magnetocardiographic recordings. Phys. Med. Biol. 

2005;50:4763-81. 

[13] Castells F, Mora C, Millet J, et al. Multidimensional ICA 

for the separation of atrial and ventricular activities from 

single lead ECGs in paroxysmal atrial fibrillation episodes. 

Lect. Notes in Comput. Sci. 2004;3195: 1229-36. 

[14] Van Leeuwen P, Lange S, Klein A, et al. Reproducibility 

and reliability of fetal cardiac time intervals using 

magnetocardiography. Physiol. Meas. 2004;25:539-52. 

[15] Comani S, Srinivasan V, Alleva G, et al. Entropy-based 

automated classification of independent components 

separated from fMCG. Phys. Med. Biol. 2007;52:N87-97. 

[16] Kraskov A, Stogbauer H, Andrzejak RG, et al. Hierarchical 

clustering using mutual information. Europhys. Lett. 

2005;70(2):278-84. 

[17] Jiménez-González A, James CJ. Time-structure based 

reconstruction of physiological independent sources 

extracted from noisy abdominal phonograms. IEEE Trans. 

Biomed. Eng. 2010;57(9): 2322-30. 

 

Address for correspondence. 

 

Aída Jiménez-González 

Institute of Sound and Vibration Research (SPCG), University 

of Southampton, Southampton, SO17 1BJ, UK. 

aj11v07@soton.ac.uk, aidaj@xanum.uam.mx 

480


