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Abstract 

In this work, we use support vector machines (SVM) to 

predict if a defibrillation shock is likely to be successful 

or not in the cardioversion of persistent AF patients. The 

ECG signals of 47 patients elected for electrical 

cardioversion treatment were collected at the Royal 

Victoria Hospital in Belfast city, NI-UK.  

Signal processing was performed on ECG segments 

prior each shock. Three electrocardiographic indexes 

were extracted and used as input: the dominant atrial 

fibrillatory frequency, the mean and the standard 

deviation of the R-R interval time series of the ECG 

segments. We trained SVM using about 40% of the data.  

SVM could predict the outcome of 89% of low-energy 

shocks  100 [J], with a sensitivity (SE) of 87.50% and 

specificity (SP) of 98.8%. As a remarkable result, the 

outcome of higher energy shocks ( 150 [J]) could be 

predicted with 100% exactitude. 

 

1. Introduction 

Atrial Fibrillation (AF) is the most common cardiac 

arrhythmia, affecting 1% of the world population [1], 

with a prevalence of approximately 5.5% in people more 

than 55 year of age [2].  

Transthoracic cardioversion is a common therapy for 

restoring sinus rhythm in patients with this arrhythmia. A 

high effectiveness (between 88 and 99%) has been 

reported for this technique [3]. However, patients could 

receive between one and four defibrillation shocks before 

reversing AF back to sinus rhythm, and in some cases, 

some patients may not revert to sinus rhythm despite 

using high energy shocks. Then, to predict in whom and 

when a shock will be success represents a challenge. 

The success of electric cardioversion (ECV) depends 

on a number of factors, including the duration of the 

arrhythmia, the transthoracic impedance, the employed 

waveform and the position of the pads. The surface 

electrocardiogram (ECG) analysis has shown to be a 

useful non-invasive tool to predict the success of an 

electrical cardioversion [4, 5].  

ECG digital signal processing like the combination of 

machine learning techniques, as neural networks and 

support vector machines (SVM), have been used in the 

prediction of spontaneous termination of paroxysmal 

atrial fibrillation [6-8], and the success of electric shocks 

in the intracardiac low energy cardioversion of patients 

with atrial fibrillation. We hypothesize that SVM could 

be an useful tool in a similar way, predicting in this case, 

the success or not of the transthoracic shocks for the 

cardioversion of atrial fibrillation. 

The objective of this work is to evaluate a non invasive 

predictor based on SVM for electric shock outcomes in 

the ECV of AF before it is attempted. 

 

2. Methods 

2.1. Study population 

ECG analysis was performed on ECG segments of 47 

patients with a history of persistent AF, referred for ECV 

at the Royal Victoria Hospital, in Belfast, UK. All 

patients were fully anticoagulated as per AHA/ACC 

guidelines and baseline characteristics were recorded 

(Table 1). These characteristics reflect current clinical 

practice with a mean age of 66 years and a considerable 

number of patients having undergone a previous electrical 

cardioversion.  

 

2.2. Defibrillation protocol 

All cardioversions were carried out using the 

Heartstream XL (Philips Medical Systems). This uses an 

impedance compensated biphasic waveform. Pads were 

positioned in the right infraclavicular and left apical 
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position. Defibrillation was carried out using an 

incremental energy protocol (100J, 150J, 200J, 200J). In 

very thin or small structured patients (very low basal 

metabolic index), defibrillation protocol began with a 

shock energy below 100J (50J minimum), followed by a 

100J, then increments of 50J until a maximum of 4 

shocks. Success was defined as the restoration of sinus 

rhythm for a minimum period of 30 seconds. 

 

Table 1.  Patients clinical characteristics. 

 

Characteristics Total 

Age  66 ± 12 

Male 35 (68%) 

Hypertension 21 (41%) 

Coronary Artery Disease 37 (72%) 

Left Atrial Enlargement  

(> 47 mm) 
20 (39%) 

Pacemakers 7 (13%) 

Implantable Defibrillator 1 (2%) 

Previous Antiarrhythmia Agents 45 (88%) 

Previous Cardioversion 11 (21%) 

 

2.3. ECG recording and signal 

preprocessing 

The ECG signal (lead II), was recorded continuously 

from the analog output of a Siemens SC7000 monitor. 

Digitization was carried out at a sample frequency of 1 

KHz and 16 bits resolution. Recordings were performed 

during ECV procedure for a mean duration of 14 minutes 

and 49 seconds, including at least 60 seconds of ECG 

prior to the first shock and 4 minutes after the last one. 

Three electrocardiographic indexes were extracted: the 

dominant atrial fibrillatory frequency (DAFF), and the 

mean and the standard deviation of the R-R interval time 

series of the ECG segments (RR_MN and RR_SD 

respectively).  

ECG analysis was performed using Matlab® version 

6.5 (The Mathworks Ins., Natick, MA, USA). Signal 

processing was performed on ECG segments (between 55 

and 60 s) prior each shock. In order to reduce signal 

wandering due to respiratory activity and high frequency 

noise, a bidirectional filter (zero phase), order 100, with 

pass band 0.5Hz-50Hz was used.  

Following this, atrial activity extraction from the ECG 

signal was performed. The signal was first upsampled at 

1024 Hz, to obtain a better definition. Once QRS 

detection was carried out, there was a chosen time period 

with a fixed numbered of data samples before and after 

the fiducial point, thus capturing the QRST complex. 

Thereafter the AF reduction process was performed [9]. 

The QRST complexes were classified according to 

their morphology, applying a cross correlation technique 

between an individual beat (QRST complex) and the 

average of all the complexes. Averaging takes place with 

beats of a same class. The adopted technique was very 

similar to that used by Cantini and Coworkers [10], but 

instead of cross correlation technique for the QRST 

complexes classification and subtraction, they employed 

what they called a L1 distance with wiggling and vertical 

shifting. 

A template was created with the QRST segments 

averaged, and the transitions between successive QRST 

complexes were filled with the mean of corresponding 

intervals of the original signal. With the template signal, 

the QRST complexes were cancelled employing a 

recursive least square adaptive filter (filter order 5, 

memory factor Ȝ=0,99) to produce a residual atrial 

activity signal (RAAS). The method described by Haykin 

[11], for the weight adaptation of the RLS filter, was 

employed. 

Figure 1 shows a block diagram of the process 

employed for the extraction of the residual atrial activity 

signal (RAAS). 

 

Figure 1. Block diagram of the QRS-T cancellation 

process 

 

2.4. Spectral analysis 

RAAS was down-sampled to 256 Hz. The power 

spectrum of the residual signal was calculated by 4096 

points windowed FFT, 1024 points Gaussian window and 

768 points overlap. The DAFF was estimated as the 

frequency component with maximum power amplitude 

within the 3.5-10 Hz band. 

Spectral analysis of the atrial activity has been shown 

to have temporal variability [12]. Frequency analysis was 

carried out over whole segments (DAFF_L) and over 10 

seconds segments (DAFF_S) of the RAAS immediately 
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before electric discharges, for computing the dominant 

atrial fibrillatory frequency.  

 

2.5. Classification and statistical analysis 

Those shocks which reverted AF to sinus rhythm were 

considered as positive shocks, and the others failed in 

revert AF, as negative shocks. 

A radial basis function, support vector machine was 

employed for the classification problem. SVMs were 

trained using learning sets, formed by combination of the 

computed variables from a half of records previous to 

positive shocks and a quarter of those negative ones. 

Multiples learning sets were randomly formed. The rest 

of the data represented the test set. 

SVMs with high classification exactitude in the 

training phase were chosen for evaluating with the 

corresponding test set. 

The SVMs were implemented using libraries designed 

by the Taiwan University [13]. Equation 1 represents the 

radial basis function employed for the SVM 

implementation. 
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In the equation 1, U and V represent the vectors of 

variables, and イ is an arbitrary coefficient for setting the 

SVM. We adjusted イ=1 for building the SVMs. 

Sensitivity (SE), specificity (SP), and positive 

predictive value (PPV) were computed for the predictive 

models of the built support vector machines. 

 

3. Results 

Electric cardioversion was successful in 41 (87%) and 

unsuccessful in 6 patients (13%). A total of 107 shocks 

were delivered to the 41 successful cases. Only 2 patients 

could be cardioverted with a shock less than 100 [J] (one 

of them with 50 [J], and the other with 70 [J]). 

Cumulative number and percentage of patients according 

to energy level are shown in table 2. 

 

Table 2.  Cardioverted patients accumulative percentage. 

 

Energy level % of patients 

< 100 [J] 4 % (2/47) 

100 [J] 53 % (25/47) 

150 [J] 85 % (40/47) 

200 [J] 87 % (41/47) 

 

Employing the data of the shocks 100 [J], it was 

possible to predict the outcome of these shocks with 83% 

of exactitude, when the SVM were trained using the 

variables: RR_MN, RR_SD and DAFF_S. A better 

performance (89% of exactitude) was obtained when the 

variables RR_MN, RR_SD and DAFF_L were used for 

training the SVM.  

A 100 % of the shocks of energy 150 [J] were 

correctly predicted using RR_MN, RR_SD and DAFF_L 

in the training of the SVM. Other combinations of the 

variables did not improve the performance of the SVM in 

the classification of the shocks. Table 3 presents a 

summary of the best prediction results obtained for the 

built support vector machines, for shocks 100 and 150 

[J]. Sensitivity, specificity and positive predictive value 

about the prediction, are also show in table 3. 

 

Table 3. Performance of the SVM for different 

combinations of the variables used in the training. 

Exactitude (EX), SE, SP, and PPV are presented in %. 

 

Variables for 

SVM training 
EX SE SP PPV 

Shocks 100 [J] (N=73) 

RR_MN, RR_SD, 

DAFF_S 
83.56 91.67 79.59 68.75 

RR_MN, RR_SD, 

DAFF_L 
89.04 87.50 89.80 80.77 

Shocks 150 [J] (N=34) 

RR_MN, RR_SD, 

DAFF_S 
85.29 85.71 85.00 80.00 

RR_MN, RR_SD, 

DAFF_L 
100 100 100 100 

 

 

4. Discussions and conclusions  

In this study, we analyzed the ECG signal to assess the 

power of SVM in the prediction of successful external 

defibrillation shocks.  RR_MN, RR_SD, and DAFF_L 

variables resulted in the best classification power for 

shocks  150 J. Longer ECG segments ( 10 s) analysis 

improve SVM classification power, probably because a 

better frequency resolution for DAFF_L. Despite a 

serious limitation using just one lead (DII) and the errors 

associated to average beat subtraction method (heart axis 

variation), SVM were able to predict shock success with 

excellent results mainly for shocks  150 J including 

DAFF_L in the analysis; we could speculate here that our 

limitation in the number of analysed patients (N = 47) 

made possible such a success classification for shocks  

150 J (N = 34), and that a consideration of a greater test 

group probably will result in a reasonably but not perfect 

classification and a better discrimination between energy 

levels, in a way that a patient could,  not only be 

classified for cardioversion but also recommended for an 

specific energy level, avoiding unnecessary shocks. 
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SVM´s can be used with remarkable success for ECV 

shocks outcome prediction, efforts should be directed to 

weight variables information contribution, extended data 

sets, and software development for clinical use. 
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