
Towards a Data Fusion Model for Predicting Deterioration in Dialysis Patients

Yasmina Borhani1, Susannah Fleming1, David A Clifton1, Sheera Sutherland2, Lyndsay Hills2, David

Meredith2, Chris W Pugh2,3, Lionel Tarassenko1

1Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
2Oxford Kidney Unit, Churchill Hospital, Oxford, UK

3Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK

Abstract

The accumulation and relatively rapid removal of fluid

in haemodialysis patients is often accompanied by intradi-

alytic hypotension (IDH). Current patient monitoring dur-

ing haemodialysis includes intermittent measurements of

tympanic temperature, blood pressure and haematocrit.

However, this information is mostly used retrospectively

rather than as a means for preventing adverse events. We

suggest the use of a probabilistic data fusion model based

on dialysis vital sign data to predict IDH. We continuously

monitored the vital signs of 40 haemodialysis patients dur-

ing 8 sessions over a 6-month period in the Oxford Re-

nal Unit. The study involved non-invasively monitoring

the heart rate, blood oxygen saturation, systolic and dias-

tolic blood pressures as well as the tympanic temperature

throughout each dialysis session. The 4-dimensional vital

sign data was initially visualised on 2D projections using

the Neuroscale algorithm. The projections show a distinc-

tion between data from unstable and stable patients, with

data from hypotensive events appearing outside the region

of the 2D projection corresponding to ”normal” physiol-

ogy. A data fusion model based on an estimate of the prob-

ability density function of data from stable patients was

then created. With this model, instabilities in patient phys-

iology can be identified, and the adverse event can be pre-

dicted ahead of time in some cases.

1. Introduction

Dialysis-induced hypotension is one of the most com-

mon complications in haemodialysis treatment and occurs

in 20-30% of all dialysis sessions [1], often in conjunction

with symptoms such as cramps, nausea and vomiting [2].

Furthermore, intradialytic hypotension (IDH) is thought

to increase mortality [3]. Current patient monitoring dur-

ing dialysis treatment includes intermittent measurements

of tympanic temperature, blood pressure and haematocrit,

with medical intervention occurring once symptoms of

IDH have been observed. However, preventative interven-

tion would be more favourable for patient well-being, es-

pecially in the elderly and in patients with existing car-

diovascular problems. Impairment of baroreceptor sen-

sitivity [4] is one of many causes of IDH. In patients

with an impaired baroreceptor reflex, the cardiovascular

system does not show any negative feedback response to

changes in blood volume resulting from ultrafiltration. In

such patients, a reduction in blood pressure is not fol-

lowed by compensatory tachycardia, which results in IDH.

In the time domain, the standard deviation of RR inter-

vals (SDNN) is a common measure of heart rate variabil-

ity (HRV). Previous work has focussed on distinguishing

between hypotension-prone and hypotension-resistant pa-

tients using HRV measures in the frequency domain [5];

however, there is no established method for predicting

IDH.

Another approach is based on the fact that physiological

parameters, such as the vital signs, change before an ad-

verse event in a way that may be a precursor of patient de-

terioration. Different alarm systems have been developed

for detecting patient deterioration and prompting staff in-

tervention, with novelty detection being the most promis-

ing approach. Tarassenko et al. [6] recently developed a

data fusion based patient monitoring system, that is able to

identify abnormalities in a patient’s vital signs based on a

probabilistic model of normality in five dimensions (when

five vital signs are being recorded), learned from a large

sample of data previously collected from a representative

group of patients. We propose a similar approach to pro-

vide early warning of IDH in dialysis patients by creating a

probabilistic model of normality using vital sign data from

”stable” haemodialysis patients, and then looking for devi-

ations from that model.

2.1. Data collection

Vital-sign data, consisting of continuous, non-invasive

recordings of the heart rate, blood oxygen saturation

(SpO2), electrocardiogram (ECG) and photoplethysmo-
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All Patients Stable Patients Training Data

µ σ µ σ µ σ
HR (bpm) 77.50 17.34 78.25 14.77 76.42 14.42

HRV (bpm) 2.21 1.83 2.17 1.45 2.11 1.33

SpO2 (%) 95.36 2.74 95.58 2.55 95.63 2.55

SDA BP (mmHg) 106.04 19.18 106.41 17.85 111.61 17.41

Temp (◦ C) 35.80 0.51 35.86 0.47 35.79 0.34

Table 1. Means and standard deviations of the dataset.

graph (PPG) waveforms, were collected during an observa-

tional pilot study at the Renal Unit of the Churchill hospi-

tal in Oxford. Haematocrit, blood pressure, tympanic and

skin temperatures were recorded every 15 minutes, along-

side machine treatment parameters such as the ultrafiltra-

tion rate, from Dialog+ (B. Braun AG, Melsungen, Ger-

many) machines. 39 patients were recruited after giving

informed consent, with each patient being monitored over

a total of 8 sessions (comprising two blocks of four consec-

utive sessions, separated by 3-5 months). The final dataset

consists of vital-sign data collected from 38 haemodialysis

patients in 272 sessions. Vital-sign values outside of prede-

fined artefact-rejection limits were discarded. Ten patients

were identified as stable patients by renal clinicians, and

data from these patients was considered to reflect “normal”

physiology during haemodialysis. Stable patients were de-

fined to be those patients who had not presented with IDH

during any previous haemodialysis treatments at the Re-

nal Unit. The means and standard deviations of the vital

sign data collected from patients labeled as “stable” and

“unstable”, alongside the means and standard deviations

of the entire dataset are given in Table 1.

2.2. Data pre-processing

The vital signs in our dataset were recorded asyn-

chronously, and thus we align the individual parameters

such that we obtain sets of simultaneous, synchronous data

by applying a zero-hold between measurements. Tym-

panic temperature measurements are taken only once ev-

ery 15 minutes, and so random normally-distributed noise

N(µ, σ2), with µ = 0 and σ = 5/300, is added to the

held data. The data is then normalised using a zero-mean

unit-variance transform xn =
x−µp

σp

, with the means and

standard deviations of the data (µp, σp) set according to

the values shown in Table 1. Such normalisation removes

scaling differences in the data, such that each vital sign

covers approximately the same range under “normal” con-

ditions. The training set is defined to be the normalised

vital-sign data from the first hour of each session, for the

10 stable patients, resulting in 5,467 training examples. In

order to reduce the number of training data with minimal

loss of useful information, one-minute medians of the vital

sign data were found, and were then clustered into a subset

of prototype patterns using the k-means clustering algo-

rithm with k=500 clusters. The 100 cluster centres furthest

from the mean of the data in 4D space were discarded, and

the remaining 400 cluster centres were retained as training

data representing the 80% of the cluster centres that were

“most normal”.

2.3. Neuroscale algorithm

We visualised the 4D vital-sign data using the Neu-

roscale algorithm [8]. A radial basis function neural net-

work is trained to project the 4D data into 2D for visu-

alisation, such that the interpoint distances in the original

4D space are preserved in the 2D visualisation space. This

distance-based error measure is the Sammon stress:

E =
1

∑N

i=1

∑N

j>i d∗ij

N∑

i=1

N∑

j>i

(dij − d∗ij)
2

d∗ij
(1)

where dij denotes the Euclidian distance between two of

N points xi and xj in an m-dimensional space Rm and

d∗ij represents the distance between the corresponding two

points yi and yj in the lower, d-dimensional visualisation

space Rd. The advantage of this method over other high-

dimensional visualisation techniques is that it allows for

the generalisation of the mapping to new data. The neural

network was trained using the first hour of the 4D vital-

sign data (heart rate, oxygen saturation, systolic-diastolic

average (SDA) blood pressure and tympanic temperature)

from sessions of patients identified as “stable”. This ini-

tial hour of data is considered to be representative of the

“most normal” haemodialysis patient physiology, given

that the removal of several litres of fluid is disruptive to

homeostasis. As the network is trained using only nor-

mal data, any examples reflecting “abnormal” physiology

will be mapped outside of a region occupied by the nor-

mal data. When initializing the algorithm, the centres of

the radial basis functions were chosen to be a random sub-

set of the training data to assure correct localisation. The

widths of the radial basis functions were all set to σ = 1
and the initial weights were drawn randomly from a nor-

mal distribution centred at zero with a standard deviation

of σ = 1/30.

2.4. The patient status index

To construct the model of normality, we make the as-

sumption that the vital-sign data is drawn from an under-

lying probability density function (pdf), and that the data

is independent and identically distributed. We used the

Parzen windows method [9] to estimate the pdf of our 400

prototype patterns. This pdf may then be used to obtain an

estimate of the probability density p(x) of a new data pat-

tern x with respect to the data in the training set. The nov-

elty score Q of new data is defined to be Q(x) = − ln p(x),

such that “abnormal” data, which has a low value of p(x)
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(a)

(b)

Figure 1. (a) Neuroscale visualisation of 4D vital signs.

(b) Vital-sign and PSI data for patient Renal 8.

takes a high novelty score Q(x). It can therefore be used

as a patient status index (PSI), with low values indicating

“normality”.

Two models of normality were constructed to calculate

the PSI. Firstly, a four-dimensional model consisting of

the vital signs (heart rate, oxygen saturation, SDA blood

pressure and tympanic temperature) was created to calcu-

late “PSI4”. A second, five-dimensional model was cre-

ated, including HRV SDNN [10], in addition to the vital

signs, giving “PSI5”. We calculated the standard deviation

of normal-to-normal RR intervals (SDNN) by centering a

5-minute window on each heart rate measurement and cal-

culating the standard deviation of the heart rate measure-

ments in each window. Furthermore, we use SDNN to de-

tect rapid fluctuations in the heart rate (rather than gradual

trends which are already modelled my the HR vital-sign).

We therefore removed the trend from the heart rate prior to

calculating the SDNN.

3. Results

We now investigate sample patient data on Neuroscale

maps against a background of “normal” patient data, which

constituted the training data, to visually compare the phys-

iological state of the test patient with a pre-defined normal

population. The first hour of data is plotted in green, and

the last hour in red. We present case studies of two pa-

tients with episodes of IDH. The data from the first hour of

(a)

(b)

Figure 2. (a) Neuroscale visualisation of 4D vital signs.

(b) Vital-sign and PSI data for patient Renal 29.

dialysis of patient Renal 8 (shown in Fig. 1a) is projected

in the region of normality shown by the blue cluster and

is not indicative of abnormal vital signs. The last hour of

data, highlighted in red, is clearly projected outside of the

region of normality. We assume that, given our definition

of normality, this indicates abnormalities in the patient’s

vital signs. Looking at the vital sign data for this session

(shown in Fig. 1b), it may be seen that the last hour of vital

sign data shows abnormalities: throughout the session, the

patient’s blood oxygen saturation is maintained at around

95% (the mean SpO2 value of the training data) but in the

last hour there is a steady desaturation towards 90%, which

is two standard deviations below the mean. The heart rate,

relatively steady at 80 bpm, generally decreases in the fi-

nal hour and fluctuates between 80 and 50 bpm, the latter

value being up to two standard deviations from the mean.

The temperature rises from 36◦C in the first hour to 37◦C

(+3σ) in the final hour. The SDA blood pressure, initially
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at 90 mmHg (−1σ), falls below 80 mmHg (−2σ) towards

the end of the session, which is indicative of IDH.

Fig. 1b also shows the patient status indices based on

the four- and five-dimensional models. The hypotensive

episode just after 14:00 is reflected in a change in both

PSI4 and PSI5. Prior to this episode, the drop in SDA

blood pressure is preceded by two episodes of increased

heart rate, at 13:20 and 13:40. The PSI4 rises as the HRV

increases. However, this is due to the fact that the heart rate

rises above 100 bpm which is one standard deviation away

from the mean value of the training data, rather than due

to the sudden change in heart rate (recalling that the 4D

model does not include HRV). By comparison, the PSI5

provided by using the 5D model, shows rapid fluctuations

towards the end of the session, taking values of up to 40

(log scale). Two peaks in the PSI5, corresponding to the

two rapid changes in heart rate, precede the event at 14:00.

Fig. 2a shows another example of a patient experiencing

IDH. Again, the first hour of projected data lies within the

region of normality, while the event data lies outside of it.

A sudden decrease in SDA blood pressure just after 11:00

is preceded by an increase in HRV. The patient’s heart rate

varies between 65 (−1σ) and 100 bpm (+1σ) in the hours

preceding the event, with a particularly prominent rise and

fall in heart rate just after 10:00. PSI4 does not model the

rapid fluctuations in heart rate, as all vital signs remain

within their respective normal ranges. By including HRV

as a fifth dimension in the model of normality, multiple

peaks are observed in PSI5 prior to the event, at 08:30,

10:00, and at the event after 11:00.

4. Discussion

The results of the 2D visualisation of patient data show

that it is possible to distinguish between normal and abnor-

mal patient physiology during haemodialysis based on pa-

tient vital signs, given an adequate definition of “normal”

physiology. Abnormal vital-sign data is mapped outside

of the pre-defined region of normality. This motivates the

use of vital signs to provide early warning of patient de-

terioration in dialysis patients. Applying the 4D model of

normality to patient data with episodes of IDH, we see that

the model is capable of detecting IDH, but its predictive

value is limited to cases for which the parameters leave

their respective “normal” ranges prior to the event.

In the data collected for this study, IDH is preceded by

rapid, significant variations in heart rate in some cases.

We postulate that IDH occurs in these patients as a result

of the inability of the cardiovascular system to maintain

perfusion pressure in the presence of fluid removal. Fur-

thermore, given previous evidence of HRV being a rele-

vant parameter for IDH prediction in hypotension-prone

patients, we chose to add a measure of HRV (SDNN) to

our model of normality. The inclusion of a measure of

HRV in the PSI shows significant improvement in its pre-

dictive value. A high variability in heart rate is one exam-

ple where the absence or inadequacy of physiological com-

pensation mechanisms leads to IDH. In future work, other

measures capable of characterizing the different physio-

logical phenomena leading to instability (such as breathing

rate or the pulse transit time) will be investigated and as-

sessed for their added value with respect to the predictive

capability of the PSI5 index.
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