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Abstract 

In this paper an efficient heart beat classification 

algorithm for mobile devices is presented. A simplified 

ECG model is used for feature extraction in the time 

domain. QRS complex is modeled by two straight lines 

while P and T waves are modeled by parabolas. The T 

wave asymmetry is achieved using a fourth degree 

parabola, whereas the P wave is modeled by the second 

degree parabola. The model parameters are estimated 

using the linear least squares fitting technique. 

Heart beats are classified using the following classes: 

Normal, Supraventricular and Ventricular ectopic beats. 

Classification of model parameters is done using a feed-

forward neural network. The inputs used by the classifier 

are the following: QRS slopes, duration, P wave 

coefficients, adjacent and averaged RR intervals. Patient 

specific adaptation is achieved using a dominant heart 

beat as an additional classifier input. A series of tests 

have been performed to evaluate the classification 

algorithm. Three model sets were used for that purpose. 

The first one contains QRS parameters only. The second 

one contains the dominant QRS model as well and in the 

third model set the P wave and appropriate dominant P 

wave model are included. 

Training and testing is done using the MIT BIH 

arrhythmia database ECG signals subset and expressed 

in sensitivity (Se), specificity (Sp) and accuracy (Acc). It 

can be concluded that the best results are achieved when 

applying the classification algorithm on the third model 

set. The following results were obtained: SeN =  99.15% 

(sensitivity for normal heart beat); SpN = 97.5%; AccN = 

98.65%; SeV = 94.69% (ventricular heart beat), SpV = 

95.66%; AccV = 95.31%, SeS =  928%; SpS =  96.41%; 

AccS =94.48%. 

 

1. Introduction 

ECG analysis is still one of the most common 

procedures in the heart diseases diagnostic domain. It’s 

one of the simplest non-invasive diagnostic methods for 

various heart diseases. Long-term recordings of the ECG 

signal are, for example, required for the clinical diagnosis 

of some disease conditions and for the evaluation of new 

drugs during phase-one studies by pharmaceutical groups 

[1], [2]. The analysis is usually performed off-line by 

physicians  

One of the hardest tasks for automated ECG analysis is 

signal variability, even within ECG recordings of one 

patient only. Beside signal variability ECG signal is prone 

to many sources of noise that impact (“pollute”) the ECG 
signal, such as power line interferences, muscular 

artifacts, poor electrode contacts and baseline wanderings 

due to respiration. These external factors can increase the 

number of errors in an analysis and doctors often have to 

compare an ECG recording with the patient’s own, 
previous, individual record in order to make a reliable 

conclusion. In a similar manner, in the algorithm 

proposed in this paper, we used the patient’s dominant 
heartbeat as one of the inputs to the heartbeat classifier. 

Inter-patient heartbeat classification performance is 

addressed in [7] where, feature normalization has been 

achieved by dividing estimated features by the 

appropriate averaged features. However, this approach 

did not bring improvements in the heartbeat classification 

as the results are slightly worst than in the case when 

classification is done directly on estimated features, i.e. 

without any normalization. From mentioned algorithm 

results [7] it can be concluded that the most relevant 

features for arrhythmias detection are RR intervals. RR 

interval features usually contain RR time to next, 

previous heartbeat, some interval averaged or median 

Heart Rate Value (HRV). In [20], inter-patient adaptation 

is achieved in two steps. In the first step, a dominant 

heartbeat is estimated. In the second step, all heartbeats 

that are not similar to the dominant are considered as 

arrhythmic group beats. Arrhythmic group beats are not 

classified in heartbeat classes. Algorithm achieves high 

accuracy in separation between normal and arrhythmic 

heartbeats.  

Offline ECG processing is often adopted in monitoring 

applications and systems. The main reason for such an 
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approach, i.e. execution of the computing and processing 

tasks on the server side was a lack of the computing 

power in mobile health care devices like Holter devices 

used for long term ECG recording. However, modern 

mobile devices have significant processing power and can 

execute complex tasks, thus enabling implementation of 

real time monitoring systems with embedded ECG 

analysis algorithms at any place and at any time. In This 

paper, development and implementation of an algorithm 

for heartbeat classification in a mobile application of the 

mSens telemedicine system is described.  

The key parts of the system are: an ECG device, a 

mobile and a server application. The ECG device offers 

12 or 3/6 channels recording of ECG signal as well as 

acquisition of patients’ physical activity using an 

embedded accelerometer. The ECG device transfers 

collected measurements to the mobile phone application 

using an XML based communication protocol [6] over a 

Bluetooth link. The mobile application runs on a mobile 

phone and is responsible for processing of the incoming 

data (ECG recordings) and its transfer to the server.  

 

2. Method 

2.1. ECG Modeling – state of the art 

Several models have been proposed in the literature for 

modeling of the ECG signal. In [8], a nonlinear model 

based on the Gauss curve fitting for every wave (T wave 

asymmetry is achieved using two Gauss curve) is 

presented. This model is initially developed for 

generating synthetic electrocardiogram. The model 

parameters are estimated using nonlinear iterative 

numeric optimizations, also the ECG signal has to be 

sampled with frequency above 500Hz and as such is not 

suitable for implementation in mobile (portable) systems 

due to high computational demands. Several models 

based on the Hilbert transformation [9], Hermit 

polynomials [10], [7], Linear Discriminate Analysis 

(LDA) on delineated ECG [11], Auto Regressive (AR) 

modeling [12], and Wavelet [13], [14] have been 

proposed. Wavelet modeling is typically based on 

selecting mother wavelets similar to the QRS shape, like 

the Mexican hat wavelet and then monitoring coefficients 

on a specific scale. Wavelet can provide good temporal 

and spectral resolution, but authors often omit to 

comment the effects of using a discrete wavelet and 

dyadic scheme. Very little attention has been paid to the 

unevenly sampled nature of the RR interval time series 

which can lead to serious errors. Techniques for wavelet 

analysis of unevenly sampled data do exist [15], [16], but 

it is not clear how a discrete filter bank formulation with 

up-down sampling could avoid the inherent problems of 

re-sampling an unevenly sampled signal [3]. The 

heartbeat classification algorithms benchmark testing is 

performed in [11], [7]. The best performing classifier is 

achieved using time-domain features. This is also found 

to be the simplest and fastest classifier to implement. 

The most significant part of the existing heartbeat 

classification techniques involves significant amounts of 

computation and processing time for extraction of the 

features. The estimated model parameters are not suitable 

for direct classification and often need additional feature 

selection or processing like PCA [17] or ICA [18]. 

 

2.2. Modeling – approach used  

In the system described in this paper, the ECG 

preprocessing filtering procedure defined in Chazal [11] 

has been used. Chazal describe procedure for baseline 

wandering cancellation in ECG signal. The power line 

and other high frequency artifacts are then removed from 

the baseline corrected signal with a linear phase Finite 

Impulse Response (FIR) filter. 

In this work we used the MIT-BIH Arrhythmia database 

[23] for training and evaluating the classifier. The 

database contains two-lead ECG recordings of 

approximately 30 minutes and sampled at 360 Hz. The 

heartbeats are modeled using polynomial functions up to 

the fourth order. The first step in modeling is the R peak 

detection as the largest deflection away from the baseline. 

In our implementation, Pan and Tompkinson’s QRS 

detection algorithm [19] is used.  The QRS complex, the 

most notable transition in an ECG, is modeled using 

straight lines (Fig. 1). The QRS lines are estimated from 

the R peak on the left and right side, minimizing square 

of the difference between the ECG signal and the model. 

The QRS lines boundaries on the left and right side from 

the R peak point are the points of the major changes in 

the slope. The threshold values used to determine a major 

change of the slope are either 75% reduction of the initial 

slope kR and kL from the R peak or a change of the slope 

 

Fig. 1.  QRS complex with model features.  
kL and kR are the slopes of lines estimated from R peak 

wL and wD are number of samples on which QRS is modeled 

on left and right sight from R peak 
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sign. The QRS boundaries points represent the Q and S 

peaks. To avoid potential classification errors due to noise 

and jaggy peaks in the signal, the changes in the signal 

have to be above the threshold for six consecutive 

samples after the QRS lines boundary. The line slope is 

estimated over four samples. The selected number of 

samples (6 and 4) over which the thresholds were 

calculated were determined empirically as the values that 

provide the best accuracy in the presence of noise and 

artifacts in the ECG signal. The QRS model features are 

displayed on Fig. 1.  

QRS modeling is followed by the first part of the T 

wave modeling, locating the T wave extreme point. Due 

to the T wave inversion, the T wave extreme point can be 

negative. The T wave is searched in the area of 250 ms 

[7] after the QRS complex. A square function estimated 

on a moving 110 ms window is used for T wave 

detection. The interval of 110 ms is chosen because it 

contains the most significant part of the T wave [2]. A 

wave is detected if the function extreme point is in the 

area of ±5 ms around the window center, otherwise the 

window moves to the right. A detected wave that covers 

the largest area of all detected waves is the T wave. The 

wave peak location and the area are calculated using the 

estimated parabola coefficients. The peak is located at the 

first derivate zero. The main advantage of this procedure 

is avoidance of the T wave onset detection and usage of 

heuristic ad-hoc variable threshold value for analyzing the 

ECG derivate. The T wave detection procedure proposed 

in this paper achieves better performance when applied on 

a noisy ECG signal.   

Due to small amplitude, the P wave detection is one of 

the hardest tasks in ECG processing. The P wave can be 

absent, inverted or sharpen due to different arrhythmias. 

Often, a P wave absence occurs in supra SVT arrhythmias 

[1], [2]. In our modeling procedure, the P wave is 

modeled in a similar manner as the T wave, i.e. the P 

wave location is searched in the area after a preceding 

heartbeat T wave and next QRS complex. For the P wave 

detection, the moving window length is 80 ms. Some 

classification algorithms [7] use additional logical 

features for detection of a P wave presence. In our 

algorithm the P wave area is modeled with a square 

function and the square function coefficients only are sent 

to the classifier. Coefficients a and b from the square 

function ax2 + bx + c, are used for classification because 

they carry the most significant part of the shape 

information. These features are used from the P and T 

wave models. Fig 2. presents several ECG heartbeats with 

one PVC and appropriate models. 

 

2.3. Classification 

For classification of ECG signals we used a feed-

forward Artificial Neural Network (ANN) with one layer 

of hidden units and a soft-max output stage. The ANN 

has three outputs for heartbeat classes and 10 hidden 

neurons. Transfer functions are sigmoid. The Levenberg–
Marquardt training algorithm was found to provide the 

best training results. ANN over fitting during training is 

reduced using early stopping procedure. Twenty percents 

of the test data is used for validation during training. Due 

to the extremely uneven heartbeat type ratio in the ECG 

signal dataset, ANN training could have lead to poor 

classification performance, even if the ANN output error 

is not high. To avoid poor classification performance and 

even up the heartbeat type ratio we introduced randomly 

repeating heartbeats with a smaller ratio in the dataset.  

    Several tests are performed to evaluate the ANN 

parameters decision. The tests are performed to evaluate 

decisions on the input to the classifier by selecting a 

model parameters subset. In the smallest input set, the 

QRS model features and RR intervals are considered 

only. The QRS model parameters are the slopes of linear 

functions fitted to the ECG signal and the number of 

samples on which ECG could be successfully modeled by 

a linear function. The RR interval parameters for QRS 

classification contain RR intervals to the preceding and 

the next heart beat averaged over RR intervals on ten 

preceding heart beats. The second data set contains 

dominant heartbeat QRS parameters as well as an 

additional input features. The dominant heartbeat has 

median parameters value of the last 60 beats [8].  In the 

third data set, the P wave model parameters are also 

included in the input classifier features set. 

 

2.4. Mobile phone implementation 

The MicroFloat - an IEEE-754 floating-point library 

[22] for small Java devices is used in J2ME environment. 

The CLDC 1.1 configuration brings floating point 

arithmetic in J2ME, but not with all functions from J2SE 

Math package. J2ME application is successful executed 

on several JAVA enabled cell phones, based on J2ME 

 

Figure 2. ECG signls with appropriate model and 

difference. 
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JAVA platforms JP6 and JP7. 

 

3. Results 

Evaluation of the proposed algorithm is performed 

using the MIT-BIH arrhythmias database subset. Table 1. 

summarizes the results of the heartbeat classifications. 

Group T1 are the tests in which QRS and RR interval 

features only were provided to the classifier as the input. 

Group T2 presents the classification test results when a 

dominant heartbeat feature has been added as an input in 

addition to the QRS and RR interval features. In the third 

group of tests, the P wave model is included to the T2 

group. The results show high accuracy for VEB 

heartbeats in all test groups. The SVEB heartbeats 

detection has the best accuracy in the third test group. 

This was expected due to a very similar morphology 

between the SVEB and the N heartbeats.  

 

4. Conclusion 

    In this paper an efficient ECG heartbeat classification 

algorithm implemented in the mobile health monitoring 

system mSens is presented. The algorithm achieves high 

accuracy in classification and does not require significant 

computing resources. The proposed modeling and 

classification algorithm can be further extended for ECG 

delineation, other heartbeat tips as well as arrhythmia 

detection, especially life-treatments arrhythmias like 

ventricular flutters and tachycardia. Adding ST modeling 

could enable ischaemic heart disease analysis and 

detection. 
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Table 1. Classification Results 

 
 

Group 

 
N [%] S [%]    V [%] 

Train Test Train Test Train Test 

 

T1 

Se 99.43 99.15 12.70 10.08 94.73 92.69 

Sp 81.20 79.50 97.21 96.41 97.21 93.79 

Acc 95.73 94.65 93.52 90.48 96.03 93.31 

 

T2 

Se 99.43 99.31 85.02 83.95 96.01 93.61 
Sp 82.47 81.04 99.41 99.27 99.33 98.87 
Acc 96.01 94.82 98.38 98.25 98.72 98.19 

 

T3 

Se 99.71 99.15 93.18 92.08 97.60 94.69 

Sp 94.78 97.50 97.54 96.41 99.72 95.66 

Acc 98.80 98.65 95.72 94.48 99.53 96.31 
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