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Abstract

The analysis of the surface electrocardiogram (ECG)
is the most extended noninvasive technique in medical
diagnosis of atrial fibrillation (AF). In order to use the
ECG as a tool for the analysis of AF, we need to separate
the atrial activity (AA) from other cardioelectric signals.
In this matter, statistical signal processing techniques, like
independent component analysis (ICA) algorithms, are
able to perform a multilead statistical analysis with the
aim to obtain the AA. On the other hand time-domain-
based techniques, like Average Beat Substraction (ABS),
have been well accepted and used in clinical applications
to cancel out the QRS complex and the T wave.

In this contribution, a QRST cancellation method
based on a radial basis function (RBF) network is pro-
posed. Average Results for the RBF method applied are
(mean=+std)Cros-Correlation=0.95+0.021 and MSE =
0.356 £0.102 in contrast to traditional compared methods
that, for the best case, yielded CC' = 0.86 + 0.031 and
MSE = 0.491+0.213. The results prove that RBF based
methods are able to obtain a very accurate reduction of
ventricular activity (VA), thus providing high quality atrial
activity extraction in AF recordings.

1. Introduction

Atrial fibrillation is a common arrhythmia with a
prevalence of approximately 0.4-1.0% in the general popu-
lation [1]. Prevalence increases with age and it is estimated
to be present in 5% of those older than 65, and 10% of
those older than 70 [2]. It is associated with an increased
risk of stroke and mortality, as well as impaired exercise
tolerance, fatigue, and heart failure [3, 4]. The diagnosis
of AF, as such, has been based mainly on visual inspec-
tion of the surface electrocardiogram (ECG) [5]. Due
to the much higher amplitude of the electrical ventricu-
lar activity (VA) on the surface ECG, cancellation of the
ventricular involvement is crucial in the study of AF on
ECGs. Two approaches are generally used to perform
this task: source separation algorithms and matched tem-
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plate subtraction. Source separation algorithms try to find
uncorrelated components using principal component ana-
lysis (PCA), or to find independent components in an
instantaneous linear mixture using independent component
analysis (ICA). PCA have previously been employed to
monitor the effects of drugs [6] and assess the effects of
linear left atrial ablation [7]. ICA has been applied in or-
der to obtain ECG signals devoid of VA involvement [8, 9].

Other methods are based on standard or improved
average beat subtraction (ABS) [10]. These methods as-
sume that, in the same patient, ventricular complexes gen-
erally exhibit a limited number of forms. An average
(template) of these distinct complexes is then used to sub-
tract the VA. This method relies on the assumption that
the average beat can represent approximately each indi-
vidual beat. However, QRST morphology is often subject
to minor changes caused by respiration, patient move-
ment, etc, and, therefore, QRST residua and noise are often
present in the estimated AA or remainder ECG [4].

In this paper, a QRST cancellation system, using a Ra-
dial Basis Function (RBF) network, is proposed. This RBF
network has been developed like hierarchically layered
structure. It starts with a small number of RBFs and
then adds new RBFs if the approximation error is lar-
ger than some predetermined threshold and there is no
existing RBF that can efficiently represent the current in-
put. The adaptation strategy for the weight matrix of the
RBF network is developed using the Lyapunov approach.
Different types of RBFs can be employed by the proposed
self-organizing RBF network. The implementations using
Gaussian RBF (GRBF) are compared with PCA, ICA and
ABS techniques.

2. Materials

In this study, two types of signals have been used.
These have been referred to either real recordings from
the PhysioNet Database [11] or synthetic signals.The
sampling frequency used is 1kHz. 100 recordings with
different database (MIT-BIH Atrial Fibrillation Database,
Long-Term AF Database, MIT-BIH Arrhythmia Database,
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Figure 1. RBF neural network.

AF Termination Challenge Database...) have been selected
from PhysioNet with different types of QRS morphologies
and 100 synthetic signals with AA added [12]. The sig-
nal has been cut into three parts. The first was used for
training, the second and the third was used to validate and
compare the method.

3. Methods

The performance of an radial basis function neural net-
work depends on the number and centers of the radial basis
functions, their shapes, and the method used for learning
the input—output mapping [13, 14]. One characteristic
of these functions is that any function can be approxi-
mated by a linear combination of radial basis functions
(ie. f(z) = Y wi€;(x)). Then, it’s possible to do a
linear combination of this type of data that approximates
the function that generated these data. To achieve this
approach, this study uses a regression where several radial
basis functions have been used [15, 16, 17].

The proposed system in the present study consists of ar-
tificial neural network (ANN) with structure based on RBF
[13, 14, 18]. This structure was initially made up of three
layers: an input layer, one hidden layer made up of 30 neu-
rons, and an output layer as shown in figure 1. It starts
with a small number of RBFs and then adds new RBFs if
the approximation error is larger than some predetermined
threshold and there is no existing RBF that can efficiently
represent the current input. The adaptation strategy for the
weight matrix of the RBF network is developed using the
Lyapunov approach [19].

In Fig. 1, we show the structure of the basic RBF
network, which consists of one input layer, one output
layer, and one hidden layer [20]. For the given input
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T = [xl...xn]T , the overall response at the kth output
neuron 1 < k < p has the form
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where wy,; is the weight from the j¢h hidden neuron to the
jth output neuron. In the following, we use the notation
&;(x) =& (w1¢(j), 0(;)) » which refers to the RBF located
at the jth hidden neuron. The vector ¢(jy = [c1(j)-.-Cn(5)]
is the center of {;(z), and the parameter o;(;), i = 1,..,n,
is the radius or the width of € ; () in the ith coordinate. Fi-
nally, ¢ : [0,00) — R™ is the activation function, which
characterizes the shape of the RBF, where R is the set of
nonnegative real numbers. Usually, the activation function
¢ is constructed so that it is radially symmetric. The largest
value of ¢ is obtained when x; = c¢;(;) , whereas the value
of ¢ vanishes or becomes very small when ]ml — ¢i(j)| be-

comes large. Let wy = [wkl...wkM}T be the weight vec-
tor for the kth output neuron and let . We then rewrite
the expression for the response of the kth output neuron as
yr = wi &(z), and the output vector of the RBF network
can be represented as y = W¢(x), where y = [yl...yp]T
and WT' = [w;...wp] [13, 14, 18]. The GRBF is charac-

terized by the following activation function [20]:

This network has been built by a hidden layer network.
There have been created a number of candidate networks
(H) which contains a number of hidden neurons in order
to initiate the network learning. The value of H has been
decided by means of a test. For each candidate network,
the sum of absolute values of covariances have been calcu-
lated from Equation 4.
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where y; ,, is the output of the jth candidate network for
the pth training pattern. The parameter ¥ is the mean of
the jth hidden unit outputs, ey, , is the output error at the
kth output unit for the pth training pattern and €; is the
mean of the output errors at the kth output unit. Then,
the network with the maximum covariance I is selected
as the most promisingly network to be initialized. An op-
timum value H = 35 has been obtained.
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3.1. Performance assessment

The proposed method was thoroughly tested and com-
pared with some of the previously published QRS can-
cellation techniques, using the quantitative measures of
performance that will be next described. The QRS reduc-
tion was computed by comparing the estimated and the ori-
ginal ECG in terms of the cross-correlation (CC) and mean
square error (MSE).

The performance of the studied methods was also tested
on clinical data from Physionet. In these signals, the
real AA on the ECG was obviously unknown. The
performance was evaluated by estimating the ventricular
depolarization reduction (VDR) [21], i.e., the beat-by-beat
reduction of the R-peak amplitude that the algorithm un-
der evaluation is able to achieve. Therefore, the VDR was
a vector of values defined as:

VDR(dB) = 10log (Rgcc/Rvr) (5)

where Rpc¢ is the R-peak amplitude of the original ECG,
and Ry g is the residual R-peak amplitude of the atrial
electrogram after ventricular activity reduction. Regarding
the atrial segments, the performance was evaluated by
measuring the waveform degree of similarity (S) [21].
Thereafter, similarity was a vector of values defined as

S = Cgca,vR/TECGIVR (6)

where Cgca,vr is the covariance of the two atrial seg-
ments under evaluation (original and ventricular reduced),
and o gog and oy i are their standard deviations, respec-
tively.

4. Results

In order to research the performance of different me-
thods, which had been tested by means of the ECG re-
cordings. As a guarantee for results, the whole procedure
has been repeated all over ECG recordings.

Table 1 summarizes the obtained values of MSE, CC,
VDR and S for ECG recording. Note that significant sta-
tistical differences between RBF and ABS-ICA are repor-
ted for all the studied parameters and the analyzed re-
cordings.

As a graphical summary, figure 2 shows the estimated
AA signals corresponding to a typical AF recording when
ICA, ABS and RBF methods are applied. As can be
appreciated, the estimated AA through RBF matches the
original AA with more fidelity than ABS and ICA. This
fact agrees with the CC index and the mse mean values
presented in table 2. In addition, it can be observed that
the AA extracted by ABS and ICA present QRS residua
of larger amplitude, which is coherent with the calculated
VDR mean value. This result justifies the higher similarity
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values obtained with RBF. In contrast, the AA obtained
with ABS and ICA present notable sudden transitions.

Table 1. Results provided by the comparison between
ICA, ABS and RBF obtained for simulated AF recordings.
Values indicate mean =+ standard deviation.

ICA ABS RBF
CC 0.850+£0.046 0.86+0.031 0.95+0.021
MSE 0.536+0.123 0.491£0.213  0.356+0.102
VDR  2.67242.52 4.32+£3.16 7.05£2.25
S(%) 0.886£0.022 0.915+0.034 0.99440.002

Table 2. Results provided by the comparison between
ICA, ABS and RBF obtained for clinical AF recordings.
Values indicate mean =+ standard deviation.

ICA ABS RBF
VDR  2.128+2.31 4.23+3.02 7.01+£2.23
S(%) 0.876£0.024 0.923+0.015 0.993+0.002

These methodologies were also applied to real ECGs.
Because of the fact that the original AA was previously
unknown, the CC coefficient and MSE could not be com-
puted. As a consequence, only the VDR and S of atrial
segments were computed. The obtained values of these
parameters are presented in table 2. In the same way as
with synthetic signals, the AA obtained with RBF presents
lower ventricular residue and higher similarity between
atrial segments than those obtained with ABS and ICA.

Finally, since RBF considers dynamics in the QRST
waveform, a more accurate cancelation template is ob-
tained. As a consequence, it behaves more robustly in
those ECGs with variable QRST morphologies. In con-
trast, the AA estimated by ABS and ICA will be highly
contaminated by QRST residua; see the figure 2.

5. Conclusions

This work has presented how the proposed RBF has
been used to QRS-T cancellation from ECG recordings.
Throughout all the stages, our RBF has been adapted by
means of using the Lyapunov approach, which has been
improved in order to achieve our target. By means of this
improvement, RBF has obtained better values of CC, MSE
values of CC. MSE, VDR and S than the other methods.
The results have shown that RBF is able to obtain a very
accurate representation of VA, thus providing high quality
AA extraction in short and single-lead AF recordings. As a
way of conclusion, suffice is to say that the neural network-
based approach obtains both QRST reduction and low
modification of AA results in comparison with systems
which had been based on ICA and ABS methods.
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Figure 2. Comparison of QRST cancellation by RBF and
standard filtering techniques of AF on ECGs. a) Original
recording b) Results for ICA method. c¢) Results for ABS
method d) Results for RBF method.

Acknowledgements

This work was partly sponsored by University of
Castilla-La Mancha, TEC2010-20633 from the Ministry of
Science and Education (Government of Spain), PIT1C09-
0036-3237, PII2C09-0224-5983 and the Patronato Uni-
versitario Cardenal Gil de Albornoz.

References

[1]

(3]

(6]

Kannel W, Abbott R, Savage D, Mcnamara P. Epidemiolo-
gic features of chronic atrial-fibrillationU the framingham-
study n. Engl J Med 1982;306:1018-1022.

Fuster V, et al. Acc/aha/esc 2006 guidelines for the man-
agement of patients with atrial fibrillation: a report of the
american college of cardiology. American Heart Associ-
ation Task Force on practice guidelines and the European
Society of Cardiology committee for practice guidelines
developed in collaboration with th european heart rhythm
association and the heart rhythm society Europace 2006;
8:651-745.

Benjamin E, Wolf P, DgAgostino R, Silbershatz H, Kannel
W, Levy D. Impact of atrial fibrillation on the risk of death
circulation 1998;946-952.

Petrutiu S, Ng J, Nijm G, Al-Angari H, Swiryn S, Sahakian
A. Atrial fibrillation and waveform characterization. a time
domain perspective in the surface ecg. IEEE Eng Med Biol
Mag 2006;25:24-30.

Bollmann A, Husser D, Mainardi L, Lombardi F, Langley P,
Murray A, Rieta JJ, Millet J, Olsson SB, Stridh M, S6rnmo
L. Analysis of surface electrocardiograms in atrial fibrilla-
tion: techniques, research, and clinical applications. Euro-
pace 2006;8:911-926.

Raine D, Langley P, Murrray A, Dunuwille A, Bourke JP.
Surface atrial frequency analysis in patients with atrial fib-
rillation. J Cardiovasc Electrophysiol 2004;15:1021-1026.
Raine D, Langley P, Murrray A, Furniss SS, Bourke JP. Sur-
face atrial frequency analysis in patients with atrial fibrilla-

1014

[16]

[17]

tion: Assessing the effects of linear left atrial abalation. J
Cardiovasc Electrophysiol 2005;16:838—-844.

Vaya C, Rieta JJ, Sanchez C, Moratal D. Convolutive blind
source separation algorithms applied to the electrocardio-
gram of atrial fibrillation: Study of performance. IEEE
Trans Biomed Eng 2007;54(8):1530-1533.

Rieta JJ, Castells F, Sanchez C, Zarzoso V, Millet J. Atrial
activity extraction for atrial fibrillation analysis using blind
source separation. IEEE Trans Biomed Eng 2004;51:1176—
1186.

Slocum J, Sahakian A, Swiryn S. Diagnosis of atrial fibril-
lation from surface electrocardiograms based on computer-
detected atrial activity. J Electrocardiol 1992;25(1):1-8.
Goldberger AL, Amaral LAN, Glass L, Hausdorff JM,
Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng
CK, Stanley HE. PhysioBank, PhysioToolkit, and
PhysioNet: Components of a new research resource for
complex physiologic signals.  Circulation 2000 (June
13);101(23):e215—220.  Circulation Electronic Pages:
http://circ.ahajournals.org/ cgi/content/full/101/23/e215.
Alcaraz R, Rieta JJ. Adaptive singular value cancelation of
ventricular activity in single-lead atrial fibrillation electro-
cardiograms. Physiological Measurement 2008;29:1351—
1369.

Webb A, Shannon S. Shape-adaptive radial basis functions.
IEEE Trans Neural Netw 1998;9(6):1155-1166.

Lee CC, Chung PC, Tsai JR, Chang CI. Robust radial basis
function neural networks. IEEE Trans Syst Man Cybern B
Cybern 1999;29(6):674—685.

Jianming L, Yonggon L, Sudhoff SD, Zak HSB. Self-
organizing radial basis function network for real-time
approximation of continuous-time dynamical systems.
IEEE Trans Neural Netw 2008;19(3):460—474.

Lin BS, Lin BS, Chong FC, Lai F. Higher-order-statistics-
based radial basis function networks for signal enhance-
ment. IEEE Trans Neural Netw 2007;18(3):823-832.
Gonzalez J, Rojas I, Ortega J, Pomares H, Fernandez FJ,
Diaz AF. Multiobjective evolutionary optimization of the
size, shape, and position parameters of radial basis function
networks for function approximation. IEEE Trans Neural
Netw 2007;14(6):1478-1495.

Karayiannis NB, Randolph-Gips MM. On the construction
and training of reformulated radial basis function neural
networks. IEEE Trans Neural Netw 2003;14(4):835-846.
Angeli D. A lyapunov approach to incremental stability.
IEEE Trans on Automatic Control 2002;47(3):410-421.
Singla P, Subbarao K, Junkins JL. Direction-dependent
learning approach for radial basis function networks. IEEE
Trans Neural Netw 2007;18(1):203-222.

Rieta JJ, Hornero F.  Comparative study of methods
for ventricular activity cancellation in atrial electrograms
of atrial fibrillation. Physiological Measurement 2007;
28:925-936.



