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Abstract 

To address the issue as to how and at what extent 

physiological noise that survives preprocessing affects 

TWA detection and quantification, a test was performed 

here on the fast-Fourier-transform spectral method 

(FFTSM), modified-moving-average method (MMAM), 

and adaptive-match-filter method (AMFM). These 

methods were applied to four synthetic ECG tracings 

respectively affected by no TWA, stationary TWA, and 

time-varying TWA. Absence and presence of 

physiological noise (from the MIT-BIH noise stress test 

database from the PhysioNet web site) were considered. 

Our results indicate that  the FFTSM is robust to noise 

but has an intrinsic limitation in the precision of time-

varying TWA quantification. Noise significantly affects 

TWA detection and quantification by the MMAM, while 

the AMFM offers a good compromise between robustness 

to noise and ability to identify both stationary and time 

varying TWA. 

 

 

1. Introduction 

Electrical T-wave alternans (TWA), defined as every-

other-beat fluctuation in the repolarization morphology, is 

a harbinger of malignant ventricular arrhythmias and 

sudden cardiac death [1-6]. In recent years, several 

automatic methods for TWA identification have been 

proposed. Among these, the fast-Fourier-transform-

spectral method [5] and the modified moving-average-

method [6] are the most commonly used because 

implemented in commercial machines (CH2000 and 

Heartwave, Cambridge Heart Inc., Bedford, MA; and 

CASE-8000, GE Medical Systems, Milwaukee, WI, 

respectively). Both these techniques require a 

conditioning of the ECG for noise reduction before being 

applied for TWA analysis. Such preprocessing stage is 

not required by a more recent TWA detection method 

proposed by ourselves [7,8], which uses a heart-rate 

adaptive match-filter to filter out every ECG component, 

including those related to noise, but the TWA typical one.  

Since physiological noise always affects ECG 

recordings and is usually not perfectly removed by the 

preprocessing stage, aim of the present study was to 

compare the ability of the FFTSM, MMAM and AMFM 

to correctly detect and quantify TWA in noisy conditions. 

To this aim, these competing methods were applied to 

four synthetic ECG tracings, respectively affected by no 

TWA, stationary TWA, and time-varying TWA 

characterized by either smoothed-step or sinusoidal trend. 

These synthetic ECGs were considered in the absence of 

noise or after adding recordings of either electrodes 

motion  noise, or  muscular noise, or baseline  

wanderings.      

 

2. Methods 

2.1. Simulated data 

Four basic ECG tracings (Fig.1), were synthesized  as 

a 128-fold repetition of a single noiseless beat extracted 

from a real ECG (sample frequency = 200 Hz, RR 

interval= 0.75 s): 1) NO_TWA tracing, characterized by 

the absence of TWA, 2) S_TWA tracing, characterized by 

a stationary TWA having an amplitude of 20 µV, 3) 

STEP_TWA tracing, with TWA amplitude varying from 

20 µV to 0 µV according to a smoothed (24 beats 

transition) step pattern, and 4) SIN_TWA tracing, with 

TWA amplitude varying from 20 µV to 0 µV following a 

sinusoidal pattern, with 40 beats period. All tracings were 

characterized by a uniform profile of TWA, according to 

which all samples of the T wave alternate by the same 

quantity.  

ECG corruption was obtained by adding portions (96 

s) of electrode motion noise (EL1 and EL2), muscle noise 

(MUS1 and MUS2) and baseline wandering (BAS1 and 

BAS2) recordings taken from the MIT-BIH noise stress 

test database, available at the PhysioNet web site (http: 

//www. physionet. org/ physiobank). These real noise 

signals were scaled so that their maximum amplitudes 

(difference between maximum and minimum) were either 

0 µV (i.e. no noise), or 50 µV, or 100 µV. The time 

course of all six kinds of physiological noise, throughout 

the analyzed period, is shown in Fig. 2 for the 100 µV 

normalization case.  
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2.2. TWA Detection methods 

Fast-Fourier-transform spectral method (FFTSM). 

According to this technique [5], the digital ECG 

complexes are aligned, and the power spectrum of each 

sample in the T-wave window is estimated. Then, the 

spectral amplitude of the cumulative spectrum at 0.5 cpb 

is compared to a specifically computed spectral noise 

level to decide the presence of TWA, and is eventually 

used to estimate the TWA amplitude. 

Modified-moving-average method (MMAM). This 

approach [6] consists of a time-domain procedure 

according to which even and odd beats are recursively 

averaged. Some nonlinear constraints are applied to limit 

the effect of local artefacts. TWA amplitude is computed 

as the maximal absolute difference, in the T wave 

segment, between modified-moving-averaged even and 

odd beats. 

Adaptive-match-filter method (AMFM). According to 

this technique [7,8], TWA amplitude is estimated by 

measuring the amplitude of a sinusoidal TWA signal 

obtained from filtering the digital ECG tracing with a 

match-filter centred at the TWA fundamental frequency 

which is, by definition, equal to a half heart rate. 

 

2.3. Statistics 

The ability of each method to quantify TWA amplitude 

was evaluated by computing the root mean square error 

(RMSE; µV) over the ECG length (128 beats).  
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3. Results 

In the absence of noise, the outputs of the FFTSM, 

MMAM and AMFM were affected by no error when 

applied to NO_TWA and S_TWA tracings. Instead, the 

methods provided RMSE of 9 µV, 3 µV and 2 µV, 

respectively, when applied to STEP_TWA, and 7 µV, 7 

µV and 3 µV, respectively, when applied to  SIN_TWA. 

Application to ECG tracings affected by 50 µV and 

100 µV noise yielded the results reported in Table 1. The 

FFTSM was able to accurately recognize the absence of 

TWA in NO_TWA tracings, and the presence of 

stationary TWA in S_TWA tracings, with RMSE equal to 

zero in the six cases affected by 50 μV noise, and up to 1 

µV in the six cases affected by 100 μV noise. RMSE 

increased in the presence of time-varying TWA with 

values of 9 µV for STEP_TWA, and 7 µV for SIN_TWA, 

irrespectively of noise maximum amplitude. Noise 

significantly affected the MMAM behavior in that this 

algorithm  detected false-positive TWA from all twelve 

noisy NO_TWA tracings. Accuracy of TWA 

quantification from S_TWA, STEP_TWA, and 

SIN_TWA decreased with increasing noise amplitude 

(RMSE=2÷9 µV for 50 µV noise, and RMSE=4÷12 µV 

for 100 µV noise). Noise also affected the AMFM output. 

 

Figure 1. Simulated ECG tracings affected by no TWA 

(NO_TWA), stationary TWA (S_TWA), smoothed step 

time-varying TWA (STEP_TWA), and sinusoidal time-

varying TWA (SIN_TWA).  

Figure 2. Portion (96 s) of 100 µV electrode motion 

noise (EL1 and EL2), muscle noise (MUS1 and MUS2) 

and baseline wanderings (BAS1 and BAS2) recordings.  
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Indeed, this method detected one false-positive TWA case 

from the NO_TWA tracing corrupted by 100 µV MUS1 

noise, and quantified TWA from S_TWA, STEP_TWA 

and SIN_TWA with errors ranging from 1 to 5 µV.  

  

4. Discussion and conclusion 

This simulation study was designed to compare the 

reliability of the FFTSM, the MMAM and the AMFM, in 

the process of identifying TWA in clinical ECG

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

recordings affected by physiological noise surviving 

the preprocessing stage. To this aim, a set of four ECG 

tracings, namely  NO_TWA, S_TWA, STEP_TWA and 

SIN_TWA, was considered. NO_TWA ideally represents 

the tracing of a healthy subject not affected by TWA. 

S_TWA is also an ideal case of TWA, since the time-

varying nature of TWA is well known [8-12]. TWA 

stationarity is a reality simplification, originally 

hypothesized by the FFTSM for a correct use of the 

Fourier transformation. Clinical ECG recordings with 

visible TWA show that this phenomenon may have an on-

  RMSEEL1 

(µV) 

RMSEEL2 

(µV) 

RMSEMUS1 

(µV) 

RMSEMUS2 

(µV) 

RMSEBAS1 

(µV) 

RMSEBAS2 

(µV) 

50 µV        

 NO_TWA        

 FFTSM 0 0 0 0 0 0 

 MMAM 7 5 4 3 5 4 

 AMFM 0 0 0 0 0 0 

 S_TWA        

 FFTSM 0 0 0 0 0 0 

 MMAM 3 4 4 2 4 2 

 AMFM 2 1 2 1 1 1 

 STEP_TWA        

 FFTSM 9 9 9 9 9 9 

 MMAM 8 7 7 5 6 6 

 AMFM 2 2 2 2 2 2 

 SIN_TWA        

 FFTSM 7 7 7 7 7 7 

 MMAM 9 8 8 8 8 8 

 AMFM 3 3 4 3 3 3 

        

100 µV        

 NO_TWA        

 FFTSM 0 0 0 0 0 0 

 MMAM 13 7 7 4 10 9 

 AMFM 0 0 3 0 0 0 

 S_TWA        

 FFTSM 1 0 1 0 0 0 

 MMAM 4 5 6 4 10 5 

 AMFM 5 3 4 2 2 1 

 STEP_TWA        

 FFTSM 9 9 9 9 9 9 

 MMAM 10 10 11 8 12 8 

 AMFM 3 3 3 2 2 2 

 SIN_TWA        

 FFTSM 7 7 7 7 7 7 

 MMAM 9 8 10 9 11 9 

 AMFM 5 3 4 3 4 3 

 

Table 1. Root mean square errors (RMSE; たV) obtained by application of FFTSM, MMAM, and 

AMFM to NO_TWA, S_TWA, STEP_TWA and SIN_TWA tracings affected by six (EL1, EL2, 

MUS1, MUS2, BAS1, BAS2) different kinds of noise, having 50 µV and 100 µV  maximum 

amplitude.   
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off  or a cyclic trend [13]. Consequently, at microvolt 

levels, these two kinds of TWA are represented by 

STEP_TWA, and SIN_TWA, respectively. In all 

considered tracings affected by TWA, a uniform alternans 

was hypothesized over the T wave [13] to allow a 

comparative analysis, since all three identification 

methods have identical ability to correctly quantify TWA 

in this condition (see Results and [13]). 

Because of its underlying hypothesis of stationarity, 

the FFTSM correctly recognized the absence of TWA in  

NO_TWA and the presence of 20 µV stationary TWA in 

S_TWA, whereas it provided significant TWA estimation 

RMSE (7÷9 µV over a 0÷20 µV TWA-amplitude range) 

when analyzing STEP_TWA and SIN_TWA, 

independently of noise amplitudes. FFTSM robustness to 

noise derives from the fact that its algorithms takes into 

account only the 0.5 cpb component (i.e. TWA 

frequency) of the cumulative spectrum, and no the other 

components which may pertain to noise. 

When applied to noisy NO_TWA tracings, the 

MMAM provided false-positive TWA with estimated 

amplitudes ranging from 3 to 7 µV in the presence of  50 

µV noise and from 4 to 13 µV in the presence of  100 µV 

noise. These results confirm the tendency of this 

algorithm to ascribe to TWA other kinds of noise-driven 

or physiological variability [13-14]. Moreover, the 

MMAM ability to correctly estimate TWA decreases with 

increasing TWA time-variability and with increasing 

noise amplitude (RMSE up to 12 µV over a 0÷20 µV 

TWA-amplitude range).   

Due to its ability to filter out every ECG component 

other than TWA, the AMFM keeps the RMSE within 5 

µV even in the presence of 100 µV noise. Such a high 

noise level caused an accidental false-positive TWA case 

of 3 μV amplitude (NO_TWA, MUS1). Eventually, the 

AMFM appears particularly suitable to identify both 

stationary and time-varying TWA [13].    

In conclusion, our results indicate that the FFTSM is 

robust to noise but has an intrinsic limitation in the 

precision of time-varying TWA quantification. Noise 

significantly affects TWA detection and quantification by 

the MMAM, while the AMFM offers a good compromise 

between robustness to noise and ability to identify both 

stationary and time-varying TWA. 
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