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Abstract 

Systematic review authors synthesize research to guide 
clinicians in their practice of evidence-based medicine. 
Teammates independently identify provisionally eligible studies 
by reading the same set of hundreds and sometimes thousands 
of citations during an initial screening phase. We investigated 
whether supervised machine learning methods can potentially 
reduce their workload. We also extended earlier research by 
including observational studies of a rare condition. To build 
training and test sets, we used annotated citations from a 
search conducted for an in-progress Cochrane systematic 
review. We extracted features from titles, abstracts, and 
metadata, then trained, optimized, and tested several classifiers 
with respect to mean performance based on 10-fold cross-
validations. In the training condition, the evolutionary support 
vector machine (EvoSVM) with an Epanechnikov or radial 
kernel is the best classifier: mean recall=100%; mean 
precision=48% and 41%, respectively. In the test condition, 
EvoSVM performance degrades: mean recall=77%, mean 
precision ranges from 26% to 37%. Because near-perfect 
recall is essential in this context, we conclude that supervised 
machine learning methods may be useful for reducing 
workload under certain conditions.  

Keywords: 

Artificial intelligence, Machine learning, Review literature as 
topic, Systematic review, Study characteristics [publication 
type], Cochrane Oral Health Group  

Introduction 

We conducted this study to test the hypothesis that supervised 
machine learning methods can potentially reduce the workload 
of systematic reviewers during the initial screening phase of 
citations. In this phase, teammates independently identify 
provisionally eligible studies by reading the same set of 
hundreds and sometimes thousands of titles and abstracts 
(TIABS). This bottleneck slows the production of quality 
systematic reviews meant to synthesize research to guide 
clinicians in their practice of evidence-based medicine. 

Additionally, we extended the work of Aphinyanophongs et al. 
[1], Cohen et al. [2], and Kilicoglu et al. [3] who sought to find 
rigorous clinical research using supervised machine learning 
methods. Based on the work of Haynes and colleagues (e.g., 
see [4]), rigor was presumed if trials comparing treatments 
were randomized and controlled.  

To classify studies with respect to rigor or quality, each 
research group constructed a reference collection or ‘gold 
standard’ of positive cases. Aphinyaphongs and colleagues [1] 
used MEDLINE records for articles abstracted by the ACP 
Journal Club, which is a respected meta-journal that abstracts 
or cites evidence-based research in internal medicine for 
clinicians. Cohen et al. [2] used citations for randomized 
controlled trials (RCTs) included in 15 systematic reviews of 
drug therapies conducted by an Evidence-based Practice Center 
(EPC) funded by the US Agency for Healthcare Research and 
Quality. (The EPC files are publicly available at 
http://medir.ohsu.edu/~cohenaa/ systematic-drug-class-review-
data.html.) Kilicoglu et al. [3] used a large subset of manually 
annotated citations for documents that were used to develop the 
clinical query filters in PubMed [4]. They selected rigorous 
studies relevant to human healthcare with a treatment or 
prevention focus as a gold standard.  

Because randomized and quasi-randomized controlled trials 
(RCTs) tend to be less biased relative to nonrandomized and 
observational studies, review authors prefer to include RCTs 
and quasi-RCTs in their systematic reviews. However, it is 
sometimes necessary to include studies with weaker designs 
when RCTs are unlikely or unethical. For example, 
nonrandomized and observational studies are common for 
studies of: exposure to environmental hazards; invasive surgery 
compared to no surgery; risk factors for patients with chronic 
conditions; outcomes associated with patient-selected devices 
or over-the-counter drugs; diagnostic accuracy; and rare 
disorders. Thus, to meet the need for synthesized evidence for 
these kinds of questions, classification methods for studies with 
weaker designs should be developed along with those for 
RCTs.  

The challenges are significant. Consider, for example, that 
abstracts with potentially informative words and phrases 
regarding trial or study design were unavailable in MEDLINE 
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for most articles published before 1976. Moreover, few terms 
for designs were available in the MeSH Thesaurus before the 
1990s [5 (p. 131)]. Since then, terms have been added or 
modified to index designs, including weaker ones. For 
example, the term ‘study characteristics [publication type]’ 
includes narrower terms for ‘case reports,’ ‘comparative 
study,’ and ‘evaluation studies.’ Nevertheless, according to the 
Cochrane Non-Randomised Studies Methods Group, (1) 
authors of primary studies inconsistently describe the designs 
of their studies; (2) bibliographic databases do not reliably 
index designs; and (3) good filters for nonrandomized or 
observational studies do not yet exist [6]. In fact, when the 
latter are eligible for inclusion in a review, authors are enjoined 
to not include design terms in their search filters unless the 
retrieval set is so large that the review becomes impractical. 
Thus, the initial screening phase is typically labor intensive 
when both randomized trials and nonrandomized studies are 
eligible. 

Methods 

We used a recently approved search strategy for a Cochrane 
systematic review about ameloblastomas, which are rare 
odontogenic tumors of the jaws [7]. This strategy combines a 
topic filter with the Cochrane highly sensitive filter for 
identifying randomized controlled trials (see Box 6.4.c in [5]), 
and a modified SIGN filter for observational studies [8]. 
(Without terms for designs, the size of the initial retrieval set 
would have forestalled the review.) The combined filter is 
designed to find studies that compare surgical resection to any 
other treatment of ameloblastomas. The editors of the 
Cochrane Oral Health Group acknowledged the probable low 
incidence of ameloblastomas and therefore approved inclusion 
of case-control and patient registry studies. Because the 
primary outcome is recurrence of the tumor, Bekhuis and 
colleagues modified the SIGN filter by excluding cross-
sectional studies and by including terms for registry studies [7].  

The Cochrane Oral Health Group Trials Search Coordinator 
conducted the search, which yielded 1774 citations from four 
databases: MEDLINE, EMBASE, the Cochrane Central 
Register of Controlled Trials (CENTRAL), and the Cochrane 
Oral Health Group Trials Register. We also retrieved 41 
citations from two systematic reviews [9, 10]. After de-
duplication, the total number of citations was 1814. We sorted 
the corpus by publication date in descending order. Even 
though indexing may be inadequate with respect to design, the 
sorting reflects our belief that observational studies published 
after 2007 may be better described in titles and abstracts. This 
is partly because of the increasing adoption of the STROBE 
statement for reporting observational studies [11] by 
biomedical journals, including Annals of Internal Medicine, 
Lancet, and PLoS, among others. (See a list of journals at 
http://www.strobe-statement.org.) In the STROBE checklist, 
one of several recommendations for writing a good report 
states that authors should “indicate the study’s design with a 
commonly used term in the title or the abstract.” The checklist 
is available at http://www.strobe-statement.org/index.php?id= 
checklists. 

We built training and test sets by selecting the most recent 
citations from the initial retrieval set and then proportionately 
distributed citations from the systematic reviews. Citations in 
the test set (n=100) and training set (n=300) were labeled with 
respect to eligibility status in accordance with the consensus 
decisions of the Cochrane review team [7]. Thus, citations 
pointing to provisionally eligible studies were labeled as 
‘include’ and those pointing to ineligible studies as ‘exclude.’ 
Thirteen percent of studies (13%) were provisionally eligible in 
both the training and test sets.  

We used EndNote to manage citations, to record eligibility 
decisions of the review team, and to export a text file of 400 
citations which was then ‘chunked’ into separate files (one per 
citation) using Perl. We used RapidMiner [12], a software 
package for machine learning and data mining, to which we 
added a plug-in to process text (available at 
http://wvtool.sourceforge.net). 

Features were extracted from TIABS and metadata using a 
bag-of-words approach. Pre-processing text involved string 
tokenizing, converting to lower case, filtering out Medline [13] 
or English stop words, filtering out tokens with length less than 
3, and Porter stemming. Feature vectors were weighted with 
term frequencies (TF) or the product of TF and inverse 
document frequencies (TFIDF); vectors were pruned of terms 
that occurred in at most 3 citations. Features were selected for 
information gain. 

Broadly, we followed the following steps: (1) We trained 
several classifiers using  processed feature sets; (2) compared 
mean performance of classifiers based on 10-fold cross-
validations, where performance measures were mean recall, 
mean precision, and the harmonic mean of equally-weighted 
precision and recall (F1); (3) used grid optimization to find the 
kernel type that minimized absolute error for the evolutionary 
support vector machine (EvoSVM) classifier [14]; (4) 
investigated the impact of training set size on performance; and 
(5) compared the performance of EvoSVM configurations on  
the held-out test set.  

T. Bekhuis and D. Demner-Fushman / Towards Automating the Initial Screening Phase of a Systematic Review 147



Results 

In early analyses, naïve Bayes and support vector machines 
(SVMs)—distinct from EvoSVMs—failed as classifiers, even 
though many researchers have used these algorithms to 
successfully classify documents [15].  Instead, we compared 
the following RapidMiner classifiers: DecisionTree, EvoSVM, 
and weightily averaged one-dependence estimator (WAODE) 
[16], focusing on EvoSVM in later analyses. To train the 
WAODE classifier, we first discretized features using the 
minimal entropy partitioning operator. Selected training results 
are presented in Table 1.  

Analyses not presented compared the performance of each 
classifier by varying the weights (TF vs TFIDF) for the feature 
vectors. With the exception of the DecisionTree classifier, 
performance was better when using TFIDF weights. English 
stop words instead of MEDLINE stop words were used when 
pre-processing text for all classifiers because recall was higher 
when using the former in early analyses. 

Table 1–Mean training performance of selected classifiers over 
10-fold cross-validations 

 
Performance  

 

Classifier 
Mean  
Recall  
(%) 

Mean 
Precision 
 (%) 

F1 

 

DecisionTree 
(TF)    

MEDLINE 
Stop words 

25.83 42.83 0.305 

English 
Stop words 

30.83 45.83 0.355 

EvoSVM 
(TFIDF)    

Radial 100.00 41.47 0.578 

Polynomial 
Degree 3 66.67 72.83 0.660 

Polynomial 
Degree 4 65.83 73.50 0.676 

Epanechnikov 
Degree 3 95.00 60.20 0.714 

Epanechnikov 
Degree 4 100.00 48.29 0.648 

WAODE 
(TFIDF) 65.83 72.33 0.677 

In the training condition, recall is perfect for the EvoSVM 
classifier with a radial or Epanechnikov (degree 4) kernel, 
although precision is modest. F1 is highest for the EvoSVM 

classifier with an Epanechnikov (degree 3) kernel (see Table 
1). 
Four EvoSVM kernel types (radial, Epanechnikov, Gaussian-
combination, and multiquadric) were compared using a grid 
parameter optimization algorithm with 3 iterations over 10-fold 
cross-validations. The EvoSVM classifier with a radial kernel 
outperforms other configurations when considering absolute 
error, mean recall, and mean precision (see Table 2).  

Table 2–Grid parameter optimization of EvoSVM kernel type 
(Complexity=1; sigma 1=10; TFIDF) 

 Performance 

EvoSVM 
Kernel 

Absolute 
Error 

Mean 
Recall 
(%) 

Mean 
Precision 

(%) 

Radial 0.253 92.3 75.0 

Epanechnikov 0.265 90.4 72.2 

Gaussian-
Combination 0.535 28.8 39.5 

Multiquadric 0.393 50.0 43.3 

 
When we trained the EvoSVM classifier with an Epanechnikov 
kernel (degree 4) on 150 citations instead of 300, mean recall 
degraded considerably, but precision and F1 improved: mean 
recall=70.00%, mean precision=76.47% and F1=0.72.  
To understand the impact of training set size, we compared the 
corresponding feature set size for ntrain=300, 250, 200, 150, and 
100 (see Figure 1). We used stratified sampling to preserve the 
proportion of provisionally eligible studies in each sample. 

 
Figure 1–Feature set size is related to the number of citations 

in the training set. 

We further investigated the relationship between performance 
of the EvoSVM classifier (Epanechnikov kernel, c=1, 
sigma1=10, TFIDF) and training set size. Training sets were 
again stratified. Mean recall degrades as the size of the training 
set decreases, dropping markedly when ntrain =100; precision 
peaks when ntrain =200 (see Figure 2).  
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Figure 2–Performance of the EvoSVM classifier is related to 
the number of citations in the training set. 

When we tested the EvoSVM classifier on the held-out test set 
of citations, performance degraded. Mean recall is equivalent 
for three configurations (77%), mean precision ranges from 
26% to 37%, and F1 from 0.39 to 0.50 (see Table 3). 

Table 3–Performance of the EvoSVM classifier on the held-out 
test set of citations 

 Performance 

EvoSVM 
Kernel 

Mean 
Recall 
(%) 

Mean 
Precision 

(%) 

F1 
 

Radial 76.92 26.32 0.392 

Epanechnikov 
Degree 3 76.92 37.04 0.500 

Epanechnikov 
Degree 4 76.92 29.41 0.426 

 
Note. Further analyses were conducted and the results are 
available upon request. 

Discussion 

It is important to realize that recall must be optimal for any 
machine learning approach meant to aid systematic review 
authors. For example, the Cochrane Collaboration strongly 
recommends broad and sensitive search strategies with high 
recall so that relevant research is not overlooked. In addition, 
review authors must make good-faith efforts to locate research 
missed by electronic searches. Thus, they handsearch journals, 
scan reference lists, contact subject experts, and more. This is 
why attaining very high recall is our primary goal. Boosting 
precision is a secondary goal even though modest precision is 
not as problematic as one might think when the percentage of 
provisionally eligible studies is relatively low. However, it may 
be a problem when the percentage is relatively high. Consider 
the following scenarios. 

1. Assume that 2000 citations are retrieved, 10% point to 
provisionally eligible studies, recall is perfect (100%), 
and precision is modest (50%). The classifier will 
correctly include 200 citations and incorrectly include 
another 200. The second review author of a two-
member review team has to read 400 TIABS instead 
of 2000, which reduces her workload by 80%.  

2. Same assumptions as before, except that 40% point to 
provisionally eligible studies. The classifier will 
correctly include 800 citations and incorrectly include 
another 800. The second review author has to read 
1600 citations, which reduces her workload by 20%.  

Nevertheless, the absolute reduction of workload is probably 
more important to a human than the percent reduction. 
Consider, for example, that in the second scenario just posed, 
the review author is spared reading 400 TIABS even though 
her workload is reduced by just 20%.  

Classifiers 

In early analyses, the failure of naïve Bayes and support vector 
machine (SVM) classifiers—distinct from EvoSVMs—may 
have been due to violations of statistical assumptions. For 
example, naïve Bayes assumes independence of features and 
positional independence, and SVM assumes linearly separable 
classes. Because WAODE [16] and EvoSVM [14] classifiers 
relax these assumptions, they are more appropriate for these 
data. (The WAODE classifier differentially weights tree-
augmented naïve Bayes models according to how informative 
each attribute is when set as the root of a tree. The EvoSVM 
classifier finds an�optimal nonlinear hyperplane to classify data 
that are not linearly separable.) 
Although we attained perfect recall with the EvoSVM classifier 
in the training condition and very high recall for EvoSVM with 
optimization, over fitting is still a concern. This concern was 
borne out in the held-out test condition when recall degraded. 
Nevertheless, the results are promising and suggest that 
EvoSVM with a radial or Epanechnikov kernel may be an 
appropriate classifier when observational studies are eligible 
for inclusion in a systematic review.  

Limitations  

This study has serious limitations. First, the extracted features 
may not have been representative of the domain because of the 
small size of the training set. This could account for the 
degradation of performance on the held-out test set. In the 
future, more than 1800 labeled citations from the initial 
screening phase of a Cochrane review [7] will be available. We 
expect that performance will improve when the classifiers are 
trained on a much larger set of citations than was the case for 
this study. Second, the bag-of-words approach—although 
affording an appropriate baseline—ignores important phrases, 
such as case report, case series, literature review, and 
ameloblastomas of the jaws. In the future, we will explore 
various feature sets to improve classification in the held-out 
testing phase. This will entail annotating citations for relevant 
terms and phrases, including design features and possibly 
affiliation and journal. Third, we know that stacking (a method 
of weighting several classifiers) is a promising approach [3, 
17]. However, stacking probably works best with diverse 
feature sets and is therefore a method more appropriate for a 
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larger study. Finally, future evaluation of classifier 
performance needs to be statistically rigorous.  

Conclusion 

The evidence suggests that supervised machine learning 
methods can potentially reduce the workload of systematic 
review authors during the initial screening phase when (1) 
observational studies of treatments for a rare condition are 
eligible for inclusion in the review, (2) the proportion of 
provisionally eligible studies is relatively small, and (3) the 
number of citations is large enough to capture representative 
features. 
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