
Model-Driven Traceability in Healthcare Information Systems Development

Ståle Walderhauga,b, Gunnar Hartvigsenb, Erlend Stava
a Health Informatics Group, SINTEF ICT, Trondheim, Norway

b Medical Informatics and Telemedicine Group, Department of Computer Science, University of Tromsø, Norway

Abstract

To improve the quality of software used in healthcare
information systems, traceability can play an important role.
The concept of traceability establishes explicit trace links in
the design, development and maintenance processes, keeping
documentation complete and updated. Trace information
allows validating bodies, domain experts, system designers
and programmers to easily navigate along artefact
dependencies and perform simple traceability analysis such as
coverage and change impact. This paper presents a novel
solution for traceability applied in model-driven development
for services in a distributed healthcare environment. The
results demonstrate the feasibility of explicitly modelling
dependencies using a formal language such as UML. Based
on the experience from implementing two full-scale homecare
systems in the EU-IST MPOWER project, the potential
improvements and challenges with a traceability solution are
discussed.

Keywords:
Continuity of care, Service oriented architecture, Model-
driven development, MDA, UML, Homecare

Introduction

The software developed for use in healthcare systems should
not fail during execution, and ideally, it should have no errors
or flaws. However, testing can only reveal errors and not
guarantee flawlessness. Organisations such as the Food and
Drug Administration (FDA) require a strict validation process
before approving software for use with medical devices.
Factors such as documentation of the software itself and the
development process become important in the validation and
testing of software. In [1], FDA describes some general
validation principles that they consider important for the
validation process. A core principle is related to traceability:
A traceability analysis should be conducted to verify that the

software design implements all of the software requirements
(page 19). Further source code
traceability analysis should be conducted and documented to
verify that: each element of the software design specification
has been implemented in code; modules and functions
implemented in code can be traced back to an element in the
software design specification and to the risk analysis;
21).

Traceability is a concept where the relationships between
system artefacts are explicitly described to become a part of
documentation, as well as direct input to software
development phases and system analysis. With the advances
of model-driven software development, traceability has
evolved into a concept that includes all system artefacts, from
initial mission documents, through requirements, design, tests,
deployments, and to operational system versions. Traceability
can be used for trace link navigation, coverage, orphan and
change impact analysis [2], also know as the core traceability
services.
Studies have shown that traceability is considered useful and
may have a positive impact on development and maintenance
of software [3]. During development and maintenance work,
readily access to information about which features that are
implemented, why (rationale) and which dependencies that
exist between different features and components, is vital for
correct (valid) implementation. Arisholm et al have found that
for complex tasks and past a certain learning curve, the

availability of UML documentation may result in significant
improvements in the functional correctness of changes as well
as the quality of their design. However, there does not seem to
be any saving of time. [4]
To explore how a traceability solution can be implemented

-IST MPOWER
project1 has designed a traceability enabled model-driven
development methodology and applied it in development of 25
healthcare specific software services. This paper presents the
traceability methodology and results focusing on the core
traceability services. Using Unified Modeling Language
(UML) [5] as the main notation for domain modelling,
requirements modelling, system design and system
development, explicit traceability links were created and used
for dependency navigation and analysis. Based on the
experience from the development project, an extended
traceability solution is discussed.

Methods and materials

Development methodology

As described in [6], the developers in the MPOWER project
applied a model-driven development approach where user

1 http://www.mpower-project.eu

MEDINFO 2010
C. Safran et al. (Eds.)

IOS Press, 2010
© 2010 IMIA and SAHIA. All rights reserved.

doi:10.3233/978-1-60750-588-4-242

242

scenarios developed by domain stakeholders (dementia
rs) were

incorporated into a UML model for software service designs.
A total of 137 stakeholders were involved in the requirements
development phase: 62 senior citizens (22 in Netherlands, 40
in Poland); 11 Family carers of persons with dementia (5 in
Austria, 6 in Norway); 49 Healthcare professionals (all in
Poland); and, 15 Dementia experts (4 in Austria, 11 in
Norway). The 18 scenarios (2-pages each) constitute the
requirements in the domain needs, and is main input to the
software service development process. In accordance with the
SOA4HL7 Methodology [7], recommendations in [8] and

tecture (MDA) [9], a complete
service development process was designed as shown in Figure
1. The development is structured into the three MDA phases.

Figure 1- Development process and artifacts

Traceability model

In the development methodology, explicit and implicit trace
links are established between the core development artefacts:

 Scenario Use case: implicit link by documenting the
scenarios in each use case

 UseCase feature: explicit link using UML
Dependency stereotyped with <<trace>>.

 Feature Service Model: explicit trace link between a
set of features and a service. Implicit from feature to
information model through the design of Service
Messages (request/response)

 Service Provider WSDL file. Inserted feature traces
as <wsdl:documentation> elements in the file.

 Documentation: direct export of navigable (HTML)
models and text (RTF) from the design model.

The metamodel for explicit trace links uses the properties of a
UML dependency, and includes trace link name/alias, source
artefact name, target artefact name, free text field and, source
and target roles.

Traceability Services

The trace information is stored within the design model and is
used by the core traceability services [2, 11]:

1. Trace navigation: from any traced artefact (modelling
element), navigate along (trace) dependencies back and
forth.

2. Coverage and orphan analysis: query trace data for a
list of traced elements and un-traced elements. Mostly
used to find requirements that are not fulfilled
(coverage) and elements that have no dependencies to
other elements (orphans)

3. Change impact analysis: query trace data for
information about which elements that will be directly
or indirectly affected by a change in a specific element.
Used to estimate cost of change requests.

A sound development methodology should support all these
services.

Results

A total of 25 software services were designed using UML,
realizing 168 features that were derived from 50 use cases,
which involved 16 different actors and described 60 sub-
activities from the 18 scenarios. 16 developers were involved
in the design of the services during a 10-month period,
following the methodology described in Figure 1. The
complete actor and service model is reported in [6].

Trace links in the Patient Management Service

To demonstrate the traceability results, the Patient
Management service is used as an example. Figure 2 shows

e
to actors and other use cases.

Figure 2- Use Cases for Management scenarios

The use case diagram shows an overview of the system
n found when looking at the

properties for each use case element. The relationship from the
use case to the scenarios is documented as a property of the
use case element. A use case can be traced to more than one
scenario description.

S. Walderhaug et al. / Model-Driven Traceability in Healthcare Information Systems Development 243

From the initial scenarios and use cases, a set of features are
derived. A feature represents a high-level requirement for the
system, and each feature is directly related to one or more use
cases as shown for the Stakeholder Management use case in
Figure 3. Using the use cases and features as input, the domain
information model is designed and services identified
following the process recommended by the OMG/HL7
Healthcare Service Specification Project in [7] and Erl in [8].
Each service design has a service rationale that traces from
feature to service in a separate diagram. The features to be
realized by the service provide useful information about the
operations that are required on the servic

 is
implemented as the operations getUserForPerson() and
getUserForPatient().

Figure 3- Features derived from the Stakeholder management

use case

Traceability Services

From the models presented above, it is possible to provide the
three core traceability services.

Trace Navigation

To navigate along (trace linked) elements one can use the
modelling tool itself (e.g. Sparx Enterprise Architect), or an
exported version of the model using any standard html
browser (e.g. Opera, Firefox, Safari). Each model element is
described with properties, appearance in diagrams and
relationships to other model elements.

Traceability Matrix: Coverage and Orphan Analysis

To perform coverage and orphan analysis, most UML tools
provide a relationship matrix query where the source, target,
relationship type and direction can be used as query
parameters. The result is a matrix showing which elements
that have a relationship, indicated with a green arrow as
shown in Figure 4. From the matrix it is possible to get an
overview of which services that realizes which features. If a
feature is not realized by any service, this indicates that not all
features are covered, and a thorough inspection should be
conducted. Similarly, if a service does not realize any of the
features in the design model, it is an indication of an orphan
service. A special situation can be identified if two services
realize the same set of features.

Figure 4- Coverage and orphan analysis matrix for

management services and features

Change Impact Analysis

This analysis service can give product owners, administrators
and project leaders a qualified estimate on the cost of making
a change to the system design, based on trace links in the
design model. A query to the design model can find all
artefacts (services, features, actors, use cases, etc.) that have
some dependency to the proposed system design change.
Using the semantics in the model along with the experience
from implementation, a qualified estimate on cost, risk factors
and required man-hours can be made. Figure 5 shows a simple
change impact visualization diagram. From the Patient
Management service it is possible to visually trace the
artefacts that are directly or indirectly dependent on its design.
E.g., replacing the Individual Plan system with another system
will require a reimplementation of five features, that each has
a property value stating its difficulty.

Figure 5- Example of model based view of traceability. All

dependencies from between the actors, use cases, features and
the final software service are shown in one diagram

S. Walderhaug et al. / Model-Driven Traceability in Healthcare Information Systems Development244

Discussion

Using model-driven development and traceability solutions
may improve documentation quality, and provide valuable
information for many stakeholders in the design, development

complete set of traceability services are not inherently
incorporated in model-driven development and must be
enforced by a design and development methodology. The
proposed methodology offers these traceability services by
using stereotyped UML dependency associations in implicit
and explicit models.

Developer effort

For the developers, only minor effort is required to create the
trace links. The view-based concept [13] used in MDD
ensures that model elements are reused across views (or
diagrams), providing consistency and persistence of
relationships. As a general principle, the more information that
is incorporated in the trace data, the more advanced analysis
services can be executed [2]. Nevertheless, for simple analysis
services as is demonstrated herein, no additional trace
information must be provided besides what is already in the
model elements. Navigation in models using a html browser,
reviewing relationships matrices for coverage / orphan
analysis, and cre
impact analysis, are services that can be easily provided and
used during design, development and maintenance using the
proposed tools and methodology.

Benefits for healthcare information system development

To take full advantage of the trace information, the
development methodology must incorporate both creation and
inspection of trace information. An evaluation in the
MPOWER project showed that traceability was especially
useful for the developers [3].
For approval of software for medical devices, FDA strongly
recommends traceability as a tool. The analysis services
associated with traceability are considered powerful for
improving the quality and documentation of the software.
Furthermore, maintenance of legacy systems is a complex and
costly process [15-17], also in the healthcare domain. Most
hospitals have one or more systems that were implemented
and put into production in the eighties. These systems are
subject to maintenance to respond to new architectures,
updates in standards, vocabularies and nomenclatures. There
are many different standards and they are continuously being
revised and new versions are ratified and made public many

Traceability services could be useful for managing
maintenance processes.

Relationship to other approaches

Since 2004, the European Conference on Model Driven
Architecture has organized a workshop on Traceability2. The
conference papers reports on successful traceability projects.
Also related to traceability is the increased use of business
process modelling and simulation of care processes in

2 http://www.ecmda-fa.org

pment in
Healthcare approach uses business process models and trace
links to conduct advanced analysis and simulation [19].
Another model-based tool that utilizes traceability services are
the three layer graph-based meta modelling tool (3LGM2)tool
from University of Leipzig, Germany [20]. The primary

information sys 2 tools could be used in the
methodology described in the Figure 1, but in view of the fact
that the 3LGM2 metamodel is different from UML, the model
elements cannot be reused in the succeeding system design
and development phases.
Another model-driven healthcare software development
process is the HL7 Development Framework [21]. The current
version describes an approach were dependencies between
artefacts are explicitly being modelled in UML. However, at
the time of writing, the framework does not incorporate any
traceability services.

Extending the traceability information

In terms of software management and maintenance, the meta
information for trace link information play an important role,
especially for the change impact analysis. Using UML as the
core modelling language, one way to extend expressiveness of
trace links is to use stereotypes and tagged values in a UML
Profile. A stereotype can have tagged values such as
implementation difficulty, importance level, creation date,
creator and version dependencies. In addition, a profile can
refine the graphical presentation of model elements and
associations. Figure 6 shows an example diagram where green
arrows indicate easy and red are critical/expensive
implementation.

Figure 6- Example of a stereotyped change impact analysis

diagram

In a larger system design, the colour coding of trace links (red
for critical, black normal and green loose coupling), explicit
notes and stakeholder icons (as shown in Figure 6) would
make the visual analysis process more effective.

S. Walderhaug et al. / Model-Driven Traceability in Healthcare Information Systems Development 245

Problems with implementation of traceability

There are some significant problems in implementing full
traceability in software system development, as is discussed in
[2, 22, 23]. The main problems are related to trace information
sharing between tools and trace semantics. It is however
possible to provide a partial traceability solution with existing
tool interfaces and metamodels, and extensions could be
provided from standardization organizations such as OMG,
HL7 or even the FDA to further enrich the trace information
database.

Concluding remarks

Traceability information can improve system development and
maintenance processes. The core traceability services
illustrated by Walderhaug et al [2] can be provided with a
design methodology that utilizes the built-in UML
dependency mechanism in a UML modeling tool. The results
presented herein demonstrate that relevant and updated
documentation can be made available to all stakeholders
involved in a sys

References

[1] U.S. Department Of Health and Human Services, Food
and Drug Administration Center for Devices, and
Radiological Health Center for Biologics Evaluation and
Research, "General Principles of Software Validation;
Final Guidance for Industry and FDA Staff," 2002.

[2] Walderhaug S, Stav E, Johansen U, and Olsen GK,
"Traceability in Model-driven Software Development," in
Designing Software-Intensive Systems - Methods and
Principles, P. F. Tiako, Ed. Hersey, PA: IGI Global,
Information Science Reference, 2008, pp. 133-160.

[3] Walderhaug S, Mikalsen M, Benc I, Loniewski G, and
Stav E, "Factors affecting developers' use of MDSD in the
Healthcare Domain: Evaluation from the MPOWER
Project," in From code-centric to model-centric
develpoment, Workshop at European Conference on
Model-Driven Architecture, Berlin, Germany, 2008.

[4] Arisholm E, Briand LC, Hove SE, and Labiche Y, "The
impact of UML documentation on software maintenance:
An experimental evaluation," IEEE Transactions on
Software Engineering, 32, pp. 365-381, 2006.

[5] Object Management Group (OMG), "UML 2.1.2
Superstructure and Infrastructure," Object Management
Group 2007.

[6] Walderhaug S, Stav E, and Mikalsen M, "Reusing models
of actors and services in smart homecare to improve
sustainability," Studies in health technology and
informatics, vol. 136, pp. 107-12, 2008.

[7] Honey A and Lund B, "Service Oriented Architecture and
HL7 v3: Methodology," HL7 Service Oriented
Architecture Special Interest Group (SOA SIG)November
10, 2006 2006.

[8] Erl T, Service-Oriented Architecture Concepts,
Technology, and Design. Crawfordswille, Indiana, USA:
Prentice Hall, 2006.

[9] Miller J and Mukerji J, "MDA Guide Version 1.0.1,"
Object Management Group, omg/2003-06-01, 2003-06-13
2003.

[10]CEN TC251, "EN 13940-1: Health Informatics - System
of Concepts to Support Continuity of Care - Part 1: Basic
Consepts," European Committee for Standardization,
September 26 2006.

[11] Aizenbud-Reshef N, Nolan BT, Rubin J, and Shaham-
Gafni Y, "Model Traceability," IBM Systems Journal, vol.
45, pp. 515-526, 2006.

[12] Johnston S, "UML 2.0 Profile for Software Services."
vol. 2009: IBM, 2005.

[13] International Telecommunication Union, "ITU-T Rec.
X.906|ISO/IEC 19793: Information technology - Open
distributed processing - Use of UML for ODP system
specifications," ITU, 2004.

[14] Standish Group International, "The Chaos Report,"
Standish Group International1994.

[15] Eastwood A, "Firm fires shots at legacy systems,"
Computing Canada, vol. 19, p. 17, 1993.

[16] Erlikh L, "Leveraging legacy system dollars for e-
business," IT professional, vol. 2, pp. 17-23, 2000.

[17] Huff C, "Elements of a realistic CASE tool adoption
budget," Communications of the ACM vol. 35, 1992.

[18] Moad J, "Maintaining the competitive edge," Datamation,
pp. 61-62,64,66, 1990.

[19] Wang J and Asthana A, "BPM Enabled SOA to
Maximize ROI for Healthcare Transformation."

[20] Winter A, Brigl B, Funkat G, Huber A, Heller O, and
Wendt T, "3LGM2-Modeling to support management of
health information systems," International Journal of
Medical Informatics, vol. 76, pp. 145-150, 2007.

[21] Coller L and Daoust N, "HL7 Development Framework,"
2009.

[22] Aizenbud-Reshef N, Paige RF, Rubin J, Shaham-Gafni
Y, and Kolovos DS, "Operational Semantics for
Traceability," in European Conference on Model Driven
Architecture - Traceability Workshop 2005, Nuremberg,
Germany, 2005.

[23] Champeau J and Rochefort E, "Model Engineering and
Traceability," in UML 2003 SIVOES-MDA Workshop,
San Francisco, California, USA, 2003.

Address for correspondence
Ståle Walderhaug
Department of Computer Science
University of Tromsø, 9000 Tromsø, Norway
Mobile: +47 90766069
Email: stale.walderhaug@sintef.no

S. Walderhaug et al. / Model-Driven Traceability in Healthcare Information Systems Development246

