
Goal-based design pattern for delegation of work in health care teams

Adela Grandoa, Mor Pelegb, David Glasspoola

a
 School of Informatics, Edinburgh University, Edinburgh, United Kingdom

bDepartment of Management Information Systems, University of Haifa, Israel, 31905

Abstract

We show how a domain and language independent design
pattern, defined as networks of tasks and goals, can be used to
formally specify the transfer of responsibility and accountabil-
ity when tasks are delegated in healthcare teams. The pattern
is general enough to be applied unchanged across a broad
range of different healthcare situations.

Keywords:

Clinical guideline, Goal, Design pattern, Medical
error, Exceptions

Introduction

Clinical guidelines can contribute to the definition of better,
safer, and more efficient evidence-based clinical care.
Computer-interpretable guidelines (CIG) [1] can potentially
increase the effectiveness of clinical guidelines by delivering
patient-specific decision-support at the point of care. In
general CIGs are defined in a particular language and lessons
learned while developing them are difficult to share with
groups working with other languages or different medical
conditions. A possible answer is to specify generic solutions or
design patterns [2] to recurrent common problems recognized
in health informatics using a formal vendor-independent
framework that allows sharing, reuse and study of patterns.
The idea of creating a catalog of generic patterns that could be
accessed and instantiated into particular problems using
different languages has been previously suggested [3-5].

Healthcare processes, such as those modeled in clinical guide-
lines, are often carried out by teams. Incomplete or ambiguous
specification of responsibilities and accountabilities in col-
laborative team work and the possible lack of accountability of
medical staff working in shifts are important problems in
healthcare [6, 7]. According to [8] “When delegating work to
others, registered practitioners have a legal responsibility to
have determined the knowledge and skill level required to per-
form the delegated task. The registered practitioner is account-
able for delegating the task and the support worker is account-
able for accepting the delegated tasks, as well as being respon-
sible for his/her actions in carrying it out. This is true if the
support worker has the skills, knowledge and judgement to
perform the delegation”.

In team work, delegation and assignment of tasks/goals is done
based on the competences of the members of the team. During
delegation, the responsibility for enacting a service and han-
dling exceptions is passed from the requester (client) to a per-
former (provider); when the provider cannot cope with the
exceptions he has to inform the client to transfer the responsi-
bility. The accountability for the service outcome and excep-
tions arising during the service enactment is retained by the
client [9].

We aim to tackle incomplete and ambiguous specification of
responsibility and accountability in health care teams by for-
mally specifying the transfer of responsibility and accountabil-
ity in normal and abnormal situations during delegation of
tasks/goals.

Methods

We formalize cooperative work in teams by extending a ven-
dor-independent framework that we previously developed for
specifying clinical design patterns [5]. We use the extension
to define a generic pattern for delegation of tasks/goals that
specifies levels of responsibility and accountability in normal
and abnormal situations.

Framework for specifying design patterns for normal and
exceptional behavior

In our framework [5] design patterns are specified as networks
of tasks and goals (collectively termed “keystones”) connected
by scheduling constraints based on Petri Nets: all the incoming
keystones need to be completed to enact the out coming key-
stone (AND join), the execution of only one of the incoming
keystones is required to enact the out coming keystone (XOR
join), all the out coming keystones are enacted after the ante-
cedent keystone is completed (AND split) and only one of the
out coming keystones is enacted after the antecedent keystone
is completed (XOR split). As in the PROforma model [1],
tasks can be decisions, enquiries, actions, or plans (careflows
comprising activities and goals). Goals represent temporal
patterns of state variables which should be achieved or main-
tained. When a goal is active, a decision-support system pro-
poses from a repository one or more candidate plans for satis-
fying the goal. Once the plan chosen for achieving a goal has
been completed the goal is still active and its successCondition
is checked to see if it has been achieved.

MEDINFO 2010
C. Safran et al. (Eds.)
IOS Press, 2010
© 2010 IMIA and SAHIA. All rights reserved.
doi:10.3233/978-1-60750-588-4-299

299

The framework allows abstraction of recurrent domain-
specific scenarios as patterns, as well as abnormal scenarios
originating from domain-specific or generic medical errors.
Deviations from the expected process are abstracted using
hierarchical definitions in a catalog of state-based exceptions,
such that an exception is triggered when the corresponding
state occurs, activating a goal-based pattern which abstracts
commonly used strategies for repairing or recovering from the
detected error. These strategies include invoking exception-
handling flows and suspending or discarding affected key-
stones. The suspended or discarded keystones can revert to
their previous state only after the exception-handling flow is
completed. Exceptions are classified as hazards or obstacles. A
hazard corresponds to a state that can potentially produce
harm to the patient and an obstacle corresponds to a state
where nominal execution of the guideline is not possible, ei-
ther because the task cannot be completed or if its completion
is no longer beneficiary to the patient.

Extending the design-pattern framework by specifying
roles and actors

We extend the framework of [5] by proposing four new types:

type Role= <name, competences, restrictions,
 constraints>

Name uniquely identifies the role; competences and restric-
tions are sets of keystones that the actors performing the role
can and cannot perform, respectively; Constraints are predi-
cates that an actor must satisfy to play a role. For example to
play the role of general practitioner (GP) the role player must
be a registered practitioner. Role competence of health profes-
sionals is regulated by statues and professional bodies.

type Actor= <name, roles, competences, restrictions,
 attributes >

The name uniquely identifies the actor; Roles are set of role
names that the actor is playing; Competences and restrictions
specify those different from the ones inherited from the roles
played by the actor. The sets of competences and restrictions
should be based on the actor’s attributes. For instance in gen-
eral nurses are not allowed to provide service X but nurse Ana
can do it because she has taken a recognised course. Finally
the Attributes are set of predicates that can be used to check if
the actor satisfies the role’s constraints (e.g., has_degree_GP)
or to select the actor for service delegation (e.g., based on the
attributes experience, other_medical_specialities).

The competence, accountability, and delegation of services for
some health registered professionals are regulated by statutes
and regulatory bodies. In the UK regulatory bodies include the
Nursing and Midwifery Council for nurses, midwives and
health visitors, the Health Professions Council for
physiotherapists, dieticians, speech and language therapists,
and so on. Roles not regulated by statutes are accountable for
their actions in three ways: civil law (duty of care), criminal
law, and employment law. Therefore there are good sources
of information that can be used to specify, in the way proposed
above, the competences of the roles played by health care
professionals. Once the roles and actor specifications have

been completed the following functions can be used to
determine (1) conflicts between two sets of competences and
restrictions, (2) an actor’s competence to perform a service
(keystone), and (3) the set of actors who can provide a service
for a client based on their competences and the client’s
constraints.

1. Boolean function areConflicting(keystoneSet
Compentences, keystoneSet Restrictions)=
{ If intersection (Competences, Restrictions)!=null
 then return true else return false; }

2. Boolean function isCompetent (Actor actor, Keystone
service)=
{ roleCompetences, roleRestrictions==emptySet;
 roles=actor.GetRoles() ;
 While roles!=null
 { roles.GetFirst()=role;
 roleCompetences= union(role.GetCompetences(),
 roleCompetences);
 roleRestrictions= union(role.GetRestrictions(),
 roleRestrictions);
 roles.remove(role);
 }
allCompetences= union(roleCompetences,
 ator.getCompetences());
allRestrictions= union(roleRestrictions,
 actor.getRestrictions());
If not areConflicting(allCompetences, allRestrictions) &&
 allCompetences.contains(service) &&
 not allRestrictions.contains(service)
 then return true
 else return false;
 }

An actor is competent to perform a service if and only if: there
is no conflict between the restrictions and competences de-
fined for actor and role, the actor is competent to perform the
service (actor’s and roles' competences satisfy the require-
ments for the service), and the service is not included in the
actor’s and role’s sets of restrictions.

3. ActorSet function ObtainCompetentProviders(Keystone
service, Proposition constrains, ActorSet staff)=
{ providers=emptySet;
 While staff!=emptySet
 { staff.Retrieve()=staffmember;
 If isCompetent(staffmember, assignment) &&
 canSatisfy(staffmember, assignment, constraints)
 then
 providers.add(staffmember) ;
 staff.remove(staffmember);
 }
 return providers;
}

The function canSatisfy takes as arguments an actor, a service,
and a constraint and it returns true if the actor can perform the
service satisfying the constraints. Examples of constraints in-
clude time restrictions, place where the service should be pro-
vided, etc.

A. Grando et al. / Goal-Based Design Pattern for Delegation of Work in Health Care Teams300

Each delegation starts with a service request:

type request = <client, provider, service, service type,
 satisfyCompletion, constraints>

Client identifies the agent that requires the service; provider
corresponds to the agent that agrees to provide the service;
service is the task that is assigned/delegated to the provider by
the client; service type indicates the type of service requested
and can take the values assg, deleg, sdeleg indicating assign-
ment, delegation without supervision and delegation with su-
pervision; satisfyCompletion is a function given by the client
of an assignment to the provider to check if the service satis-
fies the client’s criteria of service completion; constraints can
be defined by the client to restrict the way the service should
be provided. For instance the time constraint that the service
should be provided in less than 3 hours.

If a provider accepts a service request a contract is defined:
type contract= < service request, startTime, finishTime>

Service request is the identifier of the service request that
originated the contract; startTime is the date the contract
starts; finishTime corresponds to the date the contracts
finishes. Always finishTime>startTime.

Figure 1 shows the relationship between the new introduced
types and the already existing types from the framework [5]
used for the specification of the delegation pattern.

Figure 1- Class Diagram showing the connection between
the terms used for the specification of the Delegation Pattern

Definition of service delegation

An actor called client delegates the enactment of a task or the
achievement of a goal to a competent actor called provider
such that:

Property 1. The provider is competent and responsible for
providing the service.

Property 2. The client retains accountability for the service's
outcome and any exceptions arising from the service
enactment.

Property 3. The provider is responsible for handling any
exceptions arising during the service enactment. When the
provider cannot handle an exception the provider must transfer
responsibility back to the client.

Property 4. The client is responsible for managing any
exceptions that the provider cannot handle (whether detected
by provider or client).

Design pattern for delegation of services

We define the delegation pattern based on formal approaches
for delegation of tasks (services) between collaborative agents
[10] from agent-oriented software engineering.

The delegation pattern is divided between the client’s delega-
tion workflow (Figure 2.1) and the provider’s delegation
workflow (Figure 2.2).

Figure 2- Delegation Pattern: 1) Client_delegation 2)
Provider_delegation. In Figure 2.2 the first scheduling
constraint corresponds to an XOR split, and the second

constraint is an XOR join.

Table 1 contains the formal specification of the Client_
delegation workflow. As specified by the precondition of the
client’s workflow, a service can be delegated if the client has
the competence to do so (according to function isCompetent
the client can pursue the goal achieve_ delegated) and the ser-
vice is not already assigned to another provider (there is no
open contract and the service has not been requested accord-
ing to serviceRequest). For instance the role general practitio-
ner (GP) is competent to delegate the measurement of the pa-
tient’s blood pressure to members of the hospital staff compe-
tent for that task, only if the same request is not being proc-
essed.

As shown in Figure 2.1 first the client tries to achieve the goal
achieve_contract_awarded. For instance, the GP Juan can
check the set of competent staff and delegate the task of meas-
uring the patient’s blood pressure to nurse Ana because she is
available at the time he is requesting. In the exceptional case
where no provider is willing to provide the requested service
or a timeout has elapsed and no contract has been awarded, the
discarding obstacle unawarded_contract is triggered, which
discards the goal achieve_contract_awarded and triggers the

A. Grando et al. / Goal-Based Design Pattern for Delegation of Work in Health Care Teams 301

goal achieve_delegation_reconsidered. Thus Juan may decide
to relax his delegation condition delaying the task to the first
time when there is a nurse available.

In the best case a contract is awarded between client and pro-
vider (goal achieve_contract_awarded) and the client waits
for service completion. In our example Juan can check the
service completion by accessing the patient’s record that con-
tains the latest measures of the patient’s systolic and diastolic
blood pressure (sbp, dbp).

It may happen that after the provider has completed the service
the client’s criterion of service completion is not satisfied; in
this case the suspending obstacle unsatisfied_service_ comple-
tion is triggered. For instance, Juan specified that he wanted to
have his patient’s blood pressure measured using the ausculta-
tory method, but according to the patient’s records the meas-
urement has been done by an oscillometric method. The obsta-
cle unsatisfied_service_completion suspends the goal achieve_
outcome_checked and triggers the goal achieve_unsatisfied_
service_completion_resolved. In our example Juan decides to
make an appointment with the patient to take the measurement
himself.

Client Juan is responsible and accountable for both exceptions
unawarded_contract and unsatisfied_service_completion be-
cause they happened before and after the service enactment,
respectively. If any exception had happened during the service
enactment nurse Ana should be responsible for dealing with it.

The workflow Client_delegation is completed when the goal
achieve_outcome_checked is achieved and, as described in
Table 1, the contract between client and provider has been
closed, and the client’s completion criteria is satisfied.

Table 1- Client_delegation

Attribute Client_delegation
Parameters service, contracts, staff, preferences, isComplete,

serviceRequests
Precondition isCompetent(actor, achieve_delegated((service,

contracts, staff, preferences)))
& not contracts.contains(service, anytype, actor,
 anyProvider, start, null)
& not serviceRequests.ObtainAll().
 contains(this.GetActor(),anyProvider,
 service, anyType)

Success
Condition

ObtainProviders(service,preferences,staff).
 contains(provider)
& contracts.contains (service,deleg,
 this.GetActor(),providers,start, finish)
& isComplete (service.GetSuccessCond())

We now turn to the provider's workflow in the delegation pat-
tern (Figure 2.2). For the sake of brevity we do not provide the
formal specification for the provider’s workflow. The pro-
vider's workflow is activated when an actor receives a request
for service delegation from a client and there is no contract

between the client and any provider for this service. The pro-
vider decides whether he wants to collaborate, in which case
he satisfies the goal achieve_collaboration_decided. If he does

not want to collaborate the provider's workflow ends without
activating the goal achieve_service_provided. For instance
Ana receives a request from Juan to make an appointment to
measure a patient’s blood pressure at a time she is available.
Ana is competent to perform the task so she accepts the

appointment. If as in this example the provider accepts the

achieve_contract_awarded is achieved, the provider’s first
goal is achieved and the provider's second goal achieve_

service_ provided is activated. The provider’s workflow fin-
ishes when according to his completion criteria the service has
been completed. The provider’s criteria for service completion
are not necessarily identical to the client’s criteria for service
completion. For example for Juan the blood pressure should be
taken using an auscultatory method, while for Ana the task is
achieved when any accurate measuring method is used. Be-
cause of possible differences between the client’s and pro-
vider’s completion criteria after the workflow Provider_ dele-
gation has been completed the contract between client and
provider is still open until the client checks that the service’s
outcome is the desired one (goal achieve_outcome_checked).

Figure 3 - Implementation of the delegation pattern in the
Tallis toolset.

Results

Properties satisfied by the pattern

Property 1: In the case of the client the pattern is defined in
terms of the goal achieve_contract_awarded. Therefore pro-
viding the service has not been assigned to anyone else, the
provider is competent to provide the requested service and
accepts the delegation (as specified by goal achieve_
collaboration_decided) then a contract is opened between
them, which makes the provider responsible for providing the
service.

Property 2: As specified by the delegation pattern, the goal
achieve_outcome_checked is part of the client's workflow,
therefore he checks that his completion criteria is satisfied
after the provider has finished the delegated service. Only if
the client’s completion criteria are satisfied is the delegation
contract between the client and provider closed. Because a
delegation contract is signed between the client and the
provider when the goal achieve_collaboration_decided is
achieved, the client becomes accountable for any exception
arising from the service enactment.

1

2

A. Grando et al. / Goal-Based Design Pattern for Delegation of Work in Health Care Teams302

Property 3 can be proved only if the following property is
satisfied by the catalogue of exceptions provided by the
exception manager:

Property to be satisfied by the catalogue of exceptions: Each
exception from the provided catalogue is specified such that
the actor responsible for meeting the goal that was triggered
in order to handle the exception is the actor who enacted the
keystones or goals that triggered the exception.

For any catalogue of exceptions provided for the patterns this
property must be checked.

Property 3: If the repository of exceptions satisfies the
property explained above then the provider is responsible for
enacting exceptions arising from the service enactment. But in
case the provider cannot cope with the exception he can
inform the client and transfer to the client the responsibility of
dealing with the exception. A hazard can be triggered to
inform the client about the exception and the recovery
strategies that he has unsuccessfully tried.

Property 4: When the provider achieves the goal
achieve_exception_informed the provider has been informed
about the unresolved exception which arose during service
enactment and responsibility for enacting a plan to recover
from the exception has been transferred the provider. Once
the provider has been informed about the unresolved exception
he can activate the goal achieve_exception_recovery_decided.

Pattern enactment

Design patterns have proved to be very powerful generic and
abstract mechanisms for software analysis, design, and com-
parison, provided they can be mapped to concrete executable
languages. In Figure 3 we show an implementation of the del-
egation pattern in the Tallis[11] toolset used for enacting
PROforma guidelines. Each component from the delegation
pattern is mapped into one or more Tallis components. Figure
3.1 corresponds to the Client_delegation_pattern. To pursue
the goal achieve_contract_awarded the GP starts querying the
existing appointments (query Appointments) and chooses an
available nurse (decision choose_nurse) to delegate the task of
measuring his patient’s blood pressure. When a nurse is cho-
sen a new appointment is created (action add_apointment).
Both GP and nurse roles and the actors playing those roles are
specified as described by the types Role and Actor that we
introduced to extend the design-pattern framework. To satisfy
the goal achieve_outcome_ checked the GP activates the ac-
tion check_patient_bp after the appointment date. Possible
exceptions are: the case when no nurse is free, which activates
the plan Plan_obstacle_unawarded_contract; or the case
when the service has not been completed according to GP’s
requests, which activates the plan Plan_obstacle_unsatisfied_
service_ completion. Figure 3.2 corresponds to the plan Pro-
vider_ delegation_ pattern. In this hospital the nurses cannot
refuse to take appointments, therefore the goal achieve_ col-
laboration_ decided is always satisfied after the GP chooses a
nurse. The provider’s plan starts when the nurse pursues the
goal achieve_service_provided by taking the blood pressure
measurement the date chosen for the appointment (query Ap-

pointments followed by action measure_bp). The delegated
service is completed when the patient’s record is updated with
the measurement (query PatientRecord followed by action
update_ PatientRecord).

Discussion

The delegation and assignment patterns have been enacted by
mapping them into the Tallis tool used for running PROforma
guidelines. In addition a simplification of the patterns, which
does not include exception detection and recovery, has been
implemented and enacted in a COGENT prototype. What re-
mains to be done is to fully explore the practical benefits of
the use of these patterns, by mapping them into a real clinical-
based application.

Acknowledgements

This work was supported by EPSRC grant EP/F057326/1 and
by a programme grant from Cancer Research UK to D. Glass-
pool.

References

[1] Peleg M, Tu SW, Bury J, Ciccarese P, Fox J, Greenes RA, et
al. Comparing Computer-Interpretable Guideline Models: A
Case-Study Approach. JAMIA 2003;10(1):52-68.

[2] Gamma E, Helm R, Johnson R, Vlissides JM. Design patterns:
Elements of reusable object-oriented software. Reading, MA:
Addison-Wesley Publishing Company; 1995.

[3] Tu SW, Campbell JR, Glasgow J, et al. The SAGE Guideline
Model: achievements and overview. JAMIA 2007;14(5):589-
98.

[4] Peleg M, Tu SW. Design Patterns for Clinical Guidelines.
AIIM 47-1:1-24, 2009.

[5] Grando A, Peleg M, Glasspool D. A goal-oriented framework
for specifying clinical guidelines and handling medical errors.
J Biomedical Informatics. Accepted Nov 2009.

[6] Mackey H. Assistant Practitioners: issues of accountability,
delegation and competence. Intl J therapy and rehabilitation
2005;12(8):331-8.

[7] Richardson G, Maynard A, Cullum N, Kinding D. Skill mix
changes: substitution or service development? Health policy
1998;45(2):119-32.

[8] CSP, RCSLT, BDA, RCN. Supervision, accountability and
delegation of activities to support workers, a guide for
registered practitioners and support workers. 2006.

[9] Barter M, Furmidge ML. Unlicensed assistive personnel.
Issues relating to delegation and supervision. JONA
1994;24(4):36-40.

[10] Sycara K, Sukthankar G. Literature Review of Teamwork
Models: Robotics Institute, Carnegie Mellon University; 2006.
Tech Report CMU-RI-TR-06-50.

[11] Tallis toolset, available at: http://www.cossac.org/tallis

A. Grando et al. / Goal-Based Design Pattern for Delegation of Work in Health Care Teams 303

