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Abstract

Although game theory has been first invented to reason with 
economic scenarios with rational agents, it has since been 
extended into many other fields including biological and 
medical sciences. In this paper we propose to model the 
interactions between virus and human in an influenza epidemic 
in a two player, adversarial game scenario with multiple levels 
of abstraction. As conventional game representations are 
inadequate in this complex problem domain, we propose Object 
Oriented Multi-Agent Influence Diagrams (OO-MAID), a novel 
graphical representation for multi-level games, which takes 
advantage of both organizational information and probabilistic 
independence in the problem domain. The OO-MAID 
representation can be readily applied in similar medical 
situations exhibiting hierarchical and probabilistic 
independent characteristics. We demonstrate the feasibility of 
this novel approach with sample models in the domain. 
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Introduction

Influenza or “flu” is one of the most common diseases found in 
both developed and developing countries, causing tens of 
thousands of deaths and huge financial losses each year. The 
damages are even greater in the case of a flu epidemic, e.g., the 
recent spread of H1N1 virus. While it is one of the most studied 
diseases, we have yet to be able to effectively deploy various 
management strategies to control the spread of seasonal or 
epidemic influenza. 

The current modeling techniques for influenza can be classified 
into three categories: deterministic dynamics functions [1,2],
complex network theory [3,4], and stimulation based on
mathematical spreading models and population distribution [5].
Most of these approaches assume fixed virus characteristics,
known consequences of policies, and/or unbound resources, 
which are often unrealistic. In addition, most of the research 
emphasizes on the epidemiological impact, without details on 
lower level interactions, such as clinical and microscopic
interactions. In this paper, we propose to model the holistic 
interactions between influenza viruses and human populations 
in a game theoretic framework. 

Game theory provides a mathematical framework for 
determining what strategies are, according to pre-defined 
utilities, most beneficial for agents interacting with each other 
in a partially observed environment. While it was first proposed
to analyze rational behavior in economics, its adaptation in the 
biological domains, i.e., evolutionary game theory [6], enables 
reasoning with populations under revolutionary pressure, 
instead of rational agents. In this context, players are 
individuals in a large population engaging in a series of 
independent game play. Strategies may be any phenotypic 
characteristics, such as tail length in certain bird species; or 
behaviors, such as the instinct of defending territory. Payoffs,
or utilities, for the players are additional or reduced “fitness” a 
player receives after each game play, using some set of 
strategies. The concept of Nash Equilibrium is replaced by a 
similar concept of revolutionary stability, and the associated 
concept Evolutionary Stable Strategies, defined as the set of 
strategies that, under the current circumstances, cannot be 
“invaded” by mutant strategies [6].

Modeling Influenza as a Game Scenario

In any game, there are three essential components: players, 
strategies and payoffs. In addition, there may exist random 
variables in the problem domain that are beyond the control of 
the players, who may however observe some of their values. In 
this section we identify the three components as well as 
possible random factors in the proposed influenza game 
scenario, and examine potential challenges and issues in 
modeling and reasoning in the game. 

As the interactions between influenza virus and human society 
is a complicated process involving a large number of random
variables in multiple levels of abstraction, we divide the 
possible factors and interactions into three levels of different 
granularities: microscopic, clinical, and epidemiological. In all 
three levels, the players would be influenza virus and human. 
The strategies, utilities and other factors, however, may differ. 

At the microscopic level, the infection of influenza in a human 
host is the interactions between influenza virus and human 
body cells. In general, systematic infection of a host by 
influenza virus depends on factors [7,8] such as: matching 
hemagglutinin receptors on the host cell surfaces, availability 
of protease for virus post-entry cleavage, cleavage properties of 
virus surface protein precursor (the above three factors 
facilitate the entry of virus into a host cell, in a process called 
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endocytosis), suitability of the host cell for viral replication,
and release of replicated viruses into bloodstream for further 
infection, which is related to virus neuraminidase surface 
protein. The immune system responds to virus infection by two 
mechanisms: innate response, which respond to infections in 
general; and adaptive immune response, which keys 
specifically to some particular virus strain after an infection.
The acquired adaptive immune response against a specific 
influenza virus strain is temporary, waning with time. In 
response to immune anti-viral mechanisms, influenza virus 
may evolve to acquire mutant genes that can suppress the 
immune response [9].

In a game model for the microscopic level, strategies for player 
virus are characteristics such as HA and NA configurations, 
while strategies for human player are characteristics such as 
immune responses. The payoff at this level is the extent of the 
infections, which can be modeled as average virus count in the 
infected host.

At the clinical level, we consider medical intervention in 
influencing infection cases. Treatments for infected cases
usually aim for symptom relief and do not directly target 
viruses, although anti-viral treatments may be necessary in
immno-compromised patients. Therefore, for the population at 
large, the most important step taken during a flu season is 
prevention. Clinical prevention of influenza can be divided into
two categories: vaccination and prophylactic use of anti-viral 
drugs. Vaccination is highly effective when the vaccine 
matches with the circulating virus strand. However, the fast 
mutation of influenza virus means that there is usually a genetic 
drift of the circulating virus strand. Prophylaxis with anti-viral 
drugs is less sensitive to genetic drift; still, drug resistance may 
arise from its usage. We show a sample game models the 
interaction in Table 1.

Table 1- Sample game model in the clinical level

Let  be the baseline transmissibility of influenza virus, c be 
the factor of change in transmissibility after drug-resistant 
mutation, be the efficacy of the vaccine, and be the efficacy 
of prophylaxis. The human player may choose using anti-viral 
prophylaxis or vaccination. And virus may mutate to become 
drug-resistant. The four possible scenarios are:

1) Anti-viral prophylaxis is chosen; virus strain mutates to 
become drug-resistant. In this case, the prophylaxis would be 
ineffective. However, studies also show that mutated drug-
resistant virus strains have lower transmissibility than wild-
type virus strains [5]. Therefore, the transmissibility in this case 
is reduced to c . c may be as low as 10% [5].

2) Anti-viral prophylaxis is chosen and virus strain does not 
mutate. In this case the transmissibility is reduced by effective 
prophylaxis measure. The payoff in terms of transmissibility is 

(1 - ) . Currently (for neuraminidase inhibitors) is around 
70% [10].

3) Vaccination is chosen; virus strain mutates to become drug-
resistant. The payoff as transmissibility is c (1 - ) .

4) Vaccination is chosen and virus strain does not mutate. The 
payoff in this case is (1 - ) .

This simple model may help to explain the low level of 
emerging drug-resistant strains <1% [11], as strategy “non-
resistant” dominates “drug-resistant” for virus player. A
complete model would include many more factors and provide 
a clearer picture of the interactions. 

At the epidemiological level, the factors relevant to the extent 
and severity of an influenza epidemic are well studied. Some of 
these factors are: transmissibility, a characteristic of the virus 
strain, which determines how easily the virus can spread in a 
population; infectious period, the duration that an infected case 
continues virus shedding (Combined, transmissibility and 
infectious period can be modeled as a function of 
infectiousness over time.); regeneration number, which is 
defined as the number of secondary infections generated from a 
primary infection case; contact rate, the number of people a 
person gets into contact in a fixed time unit; quarantine efficacy, 
which can be defined as either the portion of infected people 
being quarantined, or the degree that their infectiousness is 
reduced.

At this level, payoff for the human player may be defined as a 
cost function consisting of disease management cost and extent 
of virus infection in the population. For the virus player, the 
payoff may be a similar function of the extent of infection. 

From the proposed modeling approach, we observe that a 
complete game model consisting of all three levels and all the 
important factors is a very complex scenario. Therefore, neither 
of the traditional game representations, including the normal 
form, which is a table listing payoffs according to different 
combination of strategies; and the extensive form, which is a 
game tree with payoffs at the leaf nodes, is feasible. They both 
suffer from the curse of dimensionality and omit potentially 
important structural information in the problem domain. A new 
game representation is needed to address the characteristics in 
this specific problem domain.

Graphic Representation for Multi-Level Games

A related work that addresses part of the complexity is the 
Multi-Level Games representation proposed by Hausken [12]. 
It provides a framework for analyzing game situations where 
there are different levels of organization. However, at each 
level, the strategies and payoffs in the sub-game are still 
represented in either normal or extensive forms. Therefore it is 
unable to take advantage of any locality features that often exist 
in complex game domain such as the proposed influenza game 
scenario.

A representation that does utilize potential probabilistic 
independencies in the problem domain is the Multi-Agent 
Influence Diagram (MAID) [13], a probabilistic graphical 
game representations. It takes advantages of the Influence 

Drug-resistant Non-resistant

Anti-viral c (1 - )

Vaccination c (1 - ) (1 - )
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Diagrams' ability to represent structural dependencies in the 
problem domain. However, when dealing with problem 
domains with multiple levels of organization, the MAID 
approach requires all hierarchies to be flattened into a single 
level structure. While this is theoretically possible, it is often 
inefficient or even intractable when the number of players or 
levels of organizations are large.

While neither approach alone can satisfy the requirements for 
the proposed influenza game scenario, a combination of the 
two addresses both organization and probabilistic 
independencies issues. Therefore, we propose the Object-
oriented Multi-Agent Influence Diagrams (OO-MAID), which 
is based on the multi-level game concept and the MAID 
formulation. An OO-MAID is probabilistic graph segment that 
models an uncertain game situation with multiple levels and 
multiple agents. Each segment has a set of well defined input 
and output, which appear as chance nodes in other graphs. In 
the next section, we formally describe the syntax and semantics 
of OO-MAID.

Definitions and Semantics

We base our definition of multi-level games on an adaptation 
of Hausken’s work [12]. In this formalism, a multi-level game 
consists of three components – multi-Level game structure, 
multi-level game form and finally, multi-level game. All three 
components are extended in the OO-MAID representation as 
follows:

Multi-Level game structure, which is a recursively defined 
directed graph G = (N, A), where N is a set of nodes and A is a 
set of arcs. Three types of nodes are allowed in set N - chance 
nodes, decision nodes and utility nodes. We assume that there 
exists one and only one utility node for each player at each 
level. The outermost graph (level 0) is labeled G0, which 
organizes players. Player AL

i at level L plays the game with 
other players at the same level. In the proposed influenza game 
scenario, the game structure represents the factors in the whole 
problem domain, with decision nodes denoting strategies, 
chance nodes denoting random variables and utility nodes 
denoting payoffs. The arcs between the nodes share the 
established semantic meaning in the Influence Diagrams, 
namely, an arc pointing into a chance node or utility node 
represents conditional dependence, while an arc point to a 
decision node represents information availability. 

Multi-Level game form, which is a combination of multi-game 
structure and feasible (pure) strategies S. Therefore, player AL

i
has strategy domain SL

i. This corresponds to the set of possible 
values for the decision nodes at level L. A decision rule for 
node D is a function that maps each instantiation pa of Pa(D)
(set of parents of D) into a probability distribution. For agent 
AL

i at level L, the assignment of a decision rule to each decision 
node is called a strategy. In the influenza game scenario, S 
denotes the possible “strategies” that the virus or the human 
player may use in the game play in a certain level. Each player 
may choose to use single strategy or a set of different strategies 
with different probabilities. 

Multi-Level game, which is a multi-game form together with 
defined payoff structure. In Hausken’s definition, each player's 

(at any arbitrary level) payoff consists of two components: a 
“within-group” payoff, coming from the sub-game at the 
player's level, and a fraction of payoff distributed downwards 
from higher level games. Here, we adopt a simplified case 
where only “within-group” payoffs are considered. Payoff in 
the influenza game scenario differs between levels, e.g., for the 
human player, the payoff in the clinical level may be an 
individual’s well-being after being infected with flu virus, but 
the in the epidemiological level, the payoff could be a cost 
function involving the studied population.

With our definition, the basis of modeling a multi-level game 
starts with building the game structure, which is a directed 
acyclic graph consisting of basic nodes and complex nodes. 
There are three types of basic nodes, the chance nodes, decision 
nodes, and utility nodes, with conditional probabilistic table 
(CPT), decision rule and utility function, respectively. A 
complex node is a self-contained OO-MAID segment that 
models a sub-game in the problem domain and has a set of 
input nodes and output nodes. Each agent is represented by its 
corresponding decision nodes in the graph, and may have 
multiple utility nodes. The overall utility for the agent is simply 
the summation of all his utility nodes Ua

L at level L.

An example of a simple multi-level game segment is given in 
Figure 1, which shows a simplified influenza game model at 
the clinical level. M denotes the game play in microscopic level, 
which is an OO-MAID segment contained in the graph. The 
output of M is observed by both players at the clinical level and 
has an effect on their utilities. We further define the “output” of 

an OO-MAID segment below.

We consider an OO-MAID segment to be a stochastic function 
that converts a set of input to a set of output variables. It is 
recursively defined as follows: for each complex OO-MAID
node XL at game level L, it consists of

Input: a set of chance nodes or decision nodes in(XL) defined in 
XL-1, i.e. for node v in in(XL), Pa(v) are in graph XL – 1. However, 
they may have children nodes in graph XL. In addition, v is 
considered chance nodes in graph XL.

Output: strategy profile σ, expected payoff EU(X), output 
chance nodes Out(XL). The output nodes are defined in XL, and 
may be decision nodes or utility nodes in XL. But they are 
treated as chance nodes in XL-1.

Figure 1- A sample OO-MAID model
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To map the distribution of input node set to distributions of 
output nodes, a complex OO-MAID node is itself a complete 
OO-MAID which may contain basic nodes and complex nodes. 

A complex OO-MAID node that contains only basic nodes is 
simply a MAID. Its correctness is established from the work on 
Multi-Agent Inference Diagrams. Between levels, we show 
below that nodes inside a complex are independent of nodes 
outside, give the input and output nodes set.

Let XL-1 be a complex OO-MAID node containing complex 
node XL, we prove that node set NL in XL are independent of 
node set NL-1 – NL, given the input/output set of XL.

Proof: First we consider node types in the input/output set of 
XL. In the previous section, we have defined the decision rule to 
be a function that maps each instantiation of D’s parents into a 
probability distribution for node D, therefore it has the same 
form as a conditional probability distribution. For utility nodes, 
the utility function also may be considered conditional 
probability distribution with probabilities of 1 and 0. Therefore, 
we may treat both decision nodes and utility nodes in similar 
ways to chance nodes. 

Now, consider any path between XL and XL-1 – XL, which 
contains adjacent nodes n1 in XL and n2 in XL-1 – XL. There are 
two possibilities for the arc direction between n1 and n2. If there 
is an edge from n1 to n2, then n1 is in the output set of XL. And 
n1 does not have converging arrows centered on itself.
Applying Baye’s Balls rule [15], the path is blocked when 
conditioning on n1.

If there is an edge from n2 to n1, then n2 is in the input set of XL.
And n2 does not have converging arrows. The path is blocked 
when conditioning on n2.

With the definition we may now extend the complex node in 
Figure 1. An example is shown in Figure 2. This is a segment 
that has one input node and two output nodes. 

Computing Nash Equilibrium

The main computation task in any game form is the calculation 
of the Nash equilibrium. In multi-level games, the definition of 
the Nash equilibrium can be tricky considering the players and 
payoffs in all the sub-games. A definition of multilevel Nash 
Equilibrium is given in [12]. In our proposal, because of the 
simplification of the “within group” payoff structure and the 
probabilistic independence proved in previous section, we can 
use the conventional definition of a single player achieving no 
benefit from changing strategy, given the strategy of the other 
players being fixed. 

In the single level representation of MAID, the concept of 
strategy relevance and s-reachability is central in the 
computation of Nash equilibrium [13]. These two concepts 
both hold for the OO-MAID framework. By definition of the 
OO-MAID complex node, which maps each instantiated set of 
pa for Pa(X), the mapping then has the same form of 
conditional probabilistic distribution. Therefore a complex 
node can be collapsed into the output node set, with pre-
computed distribution function. In addition, as the output nodes 
are all considered chance nodes in higher level graph, they do 
not change the topological order of the decision nodes in the 
higher level.

For games consisting of only basic nodes, e.g., the microscopic 
level, we may break up the problem domain according to 

strategic relevance, the sub-graph, consisting of decision nodes 
that are strategically relevant (denoted as a component graph), 
is then converted to a regular game tree and standard game 
solver may be applied [13]. As finding a Nash Equilibrium for 
a game tree is super-linear, this reduces the computational time. 
A straightforward “divide and conquer” algorithm and an 
approximate algorithm have been proposed [14].

For games consisting of both basic and complex nodes, we 
propose a recursive inference algorithm, enabled by 
probabilistic independence of a complex OO-MAID node given 
its input and output node set. The algorithm below makes use 
of the algorithm proposed for MAID [14], denoted as 
ComputeMAID. An extra step at the end of ComputeMAID is 
added to return updated probability distribution of the nodes 
defined in the output node set of a complex OO-MAID node, 
after applying the strategy profile calculated from 
ComputeMAID. 

Algorithm 
ComputeOO-MAID (OO-MAID X)

 If X contains only basic nodes
ComputeMAID (X)

Else
For each complex node Xi’ in X

ComputeOO-MAID (Xi’)
Update distributions of output node in Xi’

// X now contains only basic nodes
ComputeMAID (X)

Comparing OO-MAID with MAID, while both take advantage 
of the “divide and conquer” concept, the built-in conditional 
independent complex nodes in OO-MAID simplify the 
topological ordering process by encapsulating decision nodes 
from sub-games, and also enables pre-computation. 

Figure 2- The expanded graph for X' in Figure 1, and an 
encapsulated X' viewed from the higher level.
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Towards A Complete Influenza Game Scenario

With the introduction of OO-MAID, each level in the proposed 
influenza game can be modeled in one or more OO-MAID 
segments, with the graphical representation at each level able to 
utilize any structural independencies among the random 
variables at that level. 

A complete model with all three levels and most of the relevant 
factors is currently in progress. Firstly the three different levels 
will be constructed separately, each with its own in-level 
strategy set, random variable set and payoff function. The 
connection between levels will be made possible with relevant 
input/output nodes. For example, a “strategy” chosen by the 
virus in the microscopic level, the extent of mutation, or 
deviation from prevailing strain, will be reflected as averaged 
virulence in the general population in the clinical level. Further 
domain knowledge will be elicited in later stages of the model 
construction. 

Conclusion 

In this paper we show the potential and feasibility of modeling 
an influenza epidemic as a game situation involving influenza 
virus and human society. As the problem domain is highly 
complex with multiple levels of granularities and large number 
of random variables in each level, the conventional game 
representations are inadequate in this situation. To address both 
the “multiple levels” and “potential structural independency” 
nature of the scenario, we propose OO-MAID, a novel 
probabilistic graphical representation for multi-level games. 
This framework has the potential of taking advantages of 
possible conditional independences as well as organizational 
hierarchies in a problem domain. It is based on single level
probabilistic graphical game representations, with extensions to 
allow modeling of a game scenario in different levels of 
abstraction. Although it’s motivated from the influenza game 
scenario, it is a general game representation that may be 
applied to other program domains exhibiting both 
characteristics. 

To complete the proposed game model, further domain 
knowledge on influenza epidemics must be solicited from 
healthcare experts. 

Future work also includes extension of the payoff definition. 
Currently we only consider localized payoff (or utility) for each 
agent within his own game level. While this greatly simplifies 
computation and probabilistic independence analysis, it is a 
very restricted assumption that may not be satisfied in many 
real life complex game scenarios. In the influenza game 
scenario, for example, an individual’s payoff is also associated 
with the payoff in the general population, as one of the factors, 
percentage of the population infected, greatly influences an 
individual’s chance of being infected. 
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