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Abstract 

This article deals with data on nosocomial infections acquired 
in the Geneva University Hospitals. Goal of the work is to 
derive a model from a hospital-acquired infection (HAI) pre-
valence survey of year Y and apply them to a prevalence sur-
vey of years Y+1, Y+2. This analysis permits to evaluate the 
effectiveness of preventive measures taken after the preva-
lence survey in year Y. It also analyzes the robustness of the 
SVM algorithm on time-variable attributes. The model build 
on the dataset of year Y gives better results than in a previous 
study. The application of the model on the Y+1 and Y+2 pre-
valence surveys shows simultaneously improvements and dete-
riorations of 5 performance measures. This highlights the ef-
fectiveness of prevention and reduces the risk of HAI after the 
prevalence survey of year Y. We introduce a new method to 
detect redundancy in a dataset with the SVM algorithm. 
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Introduction  

A hospital is a facility providing medical care to sick people. 
Independent of the reason for admission, a patient may acquire 
new infections inside a hospital due to the presence of micro-
organisms. These hospital-acquired infections (HAI) usually 
appear 48 hours after the patient admission. The infectious 
agents can be transmitted from other patients or by health care 
workers during medical procedures. In Switzerland, 70’000 
hospitalized patients per year are infected and 2’000 deaths 
per year are caused by HAI. Many prevention and surveillance 
programs are carried out to prevent and/or reduce the risk of 
HAI. A prevention program, for example, includes hygiene 
measures permitting to isolate or eliminate infectious agents 
such as washing hand before any contact with patients, the use 
of gloves, use of masks, disinfection, sterilization, etc. A sur-
veillance program aims at detecting infections. French et al. 
proved that a repeated prevalence surveys is a valid and realis-
tic approach for infection control and surveillance [1]. The 
prevalence of infection is the number of infected patients di-
vided by the total number of hospitalized patients at the time 

of the study [2]. The infection prevalence rate can also be used 
as an indicator of the quality of patient care.  

However, the HAIs are not always documented in the elec-
tronic health record (EHR) of the patients and the infection 
control practitioners have to carry out a survey to obtain the 
prevalence rate. For this purpose, the EHR of all hospitalized 
patients admitted for more than 48 hours are analyzed. If nec-
essary, additional information is obtained by interviews with 
nurses or physicians in charge of the patient. This survey is 
performed during one to three months on a yearly basis at the 
University and Hospitals of Geneva since 1994. This survey is 
labor intensive and it cannot be carried out all year long.  

In a previous study, we extracted the most important features 
of a HAI database allowing the prediction of an HAI infection 
[3]. Fisher’s linear discriminant was used to evaluate the pre-
dictive power of these features and it provided good results. 
However, maximum margin classifiers such as support vector 
machine (SVM) are more appealing with respect to generaliza-
tion performance from a theoretical viewpoint. A maximum 
margin classifier looks for an optimal hyperplane separating 
the training dataset so that the distance of training points to the 
optimal hyperplane is maximized. This supposes that the train-
ing data are separable. Finding the optimal hyperplane is 
equivalent to resolving the following optimization problem:  

( ) ( )min 1T T
i iw w subject to y w x b   + ≥  (1) 

In the relation (1), w  is a vector perpendicular to the hyper-

plane, b  is a scalar value, { }{ }
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training points, N the number of examples and d the number of 
variables. If certain conditions hold and using the Lagrangian 
formulation, the previous problem is equivalent to its dual (2), 
which is a quadratic optimization problem and which can be 
solved using several techniques. 

A SVM is a maximum margin classifier using only points on 
both sides of the margin or support vectors (points ix  for 
which the Lagrangian multipliers 0iα > ) to build a model. 
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For non-separable training datasets, penalty variables iξ are 
introduced to soften the constraints of the maximum margin 
formulation (1). The penalty variables are drawn as follows: 
0 1iξ< ≤  if the points are on the correct side of the hyper-
plane and 1ξ > if the point is on the wrong side. A cost vari-
able C is also introduced to control the trade-off between the 
width of the margin and the points within the margin. The goal 
of the SVM classifier is then to maximize the margin while 
minimizing the total sum of the penalties and thus the equation 
(1) becomes: 

( ) ( )min 1 , 0T p T
i i i i i

i

w w C st y w x bξ ξ ξ +   + ≥ − ≥∑   (3) 

However, the dual problem is often solved because the duality 
theory provides a convenient way to deal with constraints. The 
dual optimization problem can also be written in terms of dot 
products permitting the use of the kernel functions. The kernel 
trick allows applying the maximum margin algorithm to a 
transformed version of a non-separable dataset (feature space) 
via a mapping functionφ . The related dual problem can be 
expressed as: 

( ) 1
2 0, 0max T T T

ne G K I st y
Cα

α α α α− + ≥ =⎛ ⎞
⎜ ⎟
⎝ ⎠

   (4) 

In the previous relation, e is the n-vector of ones,  
Nα ∈ R , G(K) the Gram matrix and defined by 

( ) [ ] ( ),ij i j i j i jij
G K K y y k x x y y= = , nI  is a diagonal matrix of 

1 and 0α ≥  means 0iα ≥ for all i=1,…,n. The transformation 
function φ  is integrated in the definition of the kernel matrix 
K. One kind of such kernel is the Gaussian kernel or RBF ker-

nel expressed as ( )
2 22, ( ) ( ) i jx xT

i j i jK x x x x e σφ φ − −= = . For 

such a kernel, the misclassification cost C and the kernel pa-
rameter σ  need to be optimized. 

Many researchers consider SVM as one of the best classifica-
tion algorithm due to its theoretical foundation based on struc-
tural risk minimization implying a better generalization per-
formance [4]. However, SVM can provide bad results used 
with wrong parameters. The usual way to find the parameters 
of SVM is to scan a range of possible values of the parameters, 
evaluate the classifier with a data splitting methods such as 
cross-validation or bootstraping and then select those provid-
ing the best performance. A better method is to evaluate the 
SVM with the leave-one-out procedure during grid search. 
This process is expensive with respect to computation time 
and a more efficient way to choose the SVM parameters is to 
take advantage of the underlying theory especially the bound 
of the leave-one-out error. 

For the SVM with an RBF kernel and in the case of non-
separable training data, Vapnik showed that the leave-one-out 
error is upper bounded by 224R w  (the radius margin bound) 
[4]. R is the radius of the smallest sphere containing all ( )ixφ  
and is a solution to the following optimization problem: 

max 1 0, 1T T
iK st e

β
β β β β− ≥ =   

This bound of the leave-one-out error can be used to estimate 
the parameter σ  of the RBF kernel and the soft margin pa-
rameter C. The reader is referred to [5] for a survey of SVM 
error bound estimation. To obtain the radius margin bound for 
non-separable training data, we perform the following change:  
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% as the i-th training data. 

The kernel function becomes: 

( , ) ( , )i j i j ijK x x K x x Cδ= +% , where ijδ  is the Kronecker 

symbol. The new radius margin bound is 22R w% %  where 2R% is 
the objective value of: 

1 1max 1 0, 1T TK st e
C Cβ

β β β β⎛ ⎞
⎜ ⎟
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+ − + ≥ =    (4) 

The relation (4) can be solved using optimization techniques 
such as the gradient descent algorithms [6]. The use of the 
radius margin bound to estimate the parameters of the SVM is 
attractive thanks to the speed of its resolution. 

Even if preventive measures are taken along the year to reduce 
and/or prevent the risk of HAI, many signs and symptoms 
and/or risk factors remain reliable to diagnose an infection 
(e.g. antibiotics treatment, fever, use of devices such as cathe-
ter or urinary tract, etc.). The goal of this paper is to evaluate 
the robustness of the SVM with respect to generalization per-
formance i.e. its capacity to predict future unseen prevalence 
surveys. For this purpose, we predict the presence of an HAI 
on patient enrolled in the 2007 and 2008 prevalence survey 
from a model build on the 2006 data. This evaluation can also 
provide an insight of the effectiveness of the preventive meas-
ures taken between two prevalence surveys. A longer-term 
objective is to build an automated prevalence survey tool using 
information within the hospital data warehouse. 

Materials and Methods  

Datasets and software 

As introduced in the previous section, we use a 2006 preva-
lence survey to build the HAI model and the 2007 and 2008 
prevalence surveys for evaluation. We use three versions of 
these datasets as did in a previous study [3].  The first dataset, 
called S, contains all features from the prevalence database: 
demographic information; admission diagnostic according to 
the McCabe score and the Charlson index classification; pa-
tient information at the study date (ward type and name, status 
of Methicillin-Resistant Staphylococcus Aureus portage, etc); 
and information at the study date and the six days before (clin-
ical data, central venous catheter carriage, workload, infection 
status, etc). After a first data cleaning and binarization, this 
dataset contains 60 features and 1384 cases including 166 pos-
itive ones (11.99%). The second dataset, called S1, contains 
20 features obtained after application of 2 feature selection 
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methods (information gain [7] and SVM RFE [8]). The third 
dataset S2 is obtained from S1 but without the fever and work-
load features as the values of these features are not systemati-
cally gathered in clinical practice. We also highlighted in our 
previous study the redundancy or the negative interaction of 
these two features with the others making the learning with the 
dataset S and S1 challenging. The 2007 (resp. 2008) preva-
lence survey contains 1528 (1467) unique cases including 153 
(156) positive cases. The ratio of positive cases turns around 
10% and 12% for the 3 years. 

We use libsvm with L2 implementation (i.e. p=2 in relation 
(3)) and having a radius margin bound resolution implementa-
tion using gradient descent algorithm [9]. The software is exe-
cuted on a linux machine having quad-processor of 2.33GHz 
frequency and 3Gb of memory. 

Model selection and evaluation 

We implement the same strategy as in our previous study: 105 
random training and testing splits are created for S, S1 and S2. 
The number of splits is taken arbitrarily. The SVM parameters 
are obtained on 5 random training sets. The gradient descent 
algorithm is applied to each of the five training sets using 4 
initialization points. For each of the initialization point, 3x5 
cross-validations are performed and provide 60 couples of the 
SVM parameters. As the datasets present imbalance ratio on 
positive and negative cases, we arbitrarily correct the imbal-
ance by taking equal numbers of positive and negative cases 
before performing cross-validations. The radius margin opti-
mization may converge to the final SVM solution from each 
initialization point but we take the results having less absolute 
value of covariance on the 2 parameters.  

The evaluation of the model on 2006 data is done on the 100 
remaining training/testing splits i.e. 100 models are created 
with the best parameters and are evaluated on the correspond-
ing test set. The mean of f-measure, precision, recall or sensi-
tivity, specificity and accuracy over the 100 test sets is used as 
performance metric. The 2007 and 2008 prevalence data are 
also evaluated with the 100 models. The prediction of a case is 
the mean prediction over 100 models using a majority vote. 

Results 

Four initialization points are considered for model selection: 
( ),1init1 e= , 2 2( , )init2 e e= , 

102( , )init3 e e
−

= and 
5 5( , )init4 e e=  where e denotes the exponential function. The 

60 SVM parameters of the dataset S (respectively S1 and S2) 
are obtained in 81 (respectively 56 and 53) seconds. Table 1 
provides a summary of the obtained parameters with respect to 
their mean, median and standard deviation. The last line of 
Table 1 provides the absolute value of the covariance of the 
SVM parameters. All initialization points converge to the 
same value of C and Sigma but the initialization point init4 
(respectively init3 and init4) provides less covariance of the 
SVM parameters for the dataset S (respectively S1 and S2). 

These best parameters are used to build 100 models on the 
2006 prevalence dataset; the results are depicted in Figure 1 

and more details can be found in table 2. The horizontal bar on 
the top of figure 1 indicates if the results obtained with S, S1 
and S2 are not significantly different based on the Mann-
Wilcoxon mean test. This is the case for precision, specificity 
and accuracy of S and S1 and the Sensitivity of S1 and S2. 

The evaluation of these models on the 2006, 2007 and 2008 
data based on the features used is summarized in table 2. The 
mean of the f-measure, precision, sensitivity, specificity and 
accuracy of the models are reported. Confusion matrices are 
also reported for an intuitive reading of the results (A1, A2, 
A3, B1, B2, B3, C1, C2, C3). The numbers in the confusion 
matrix is the rounded mean of true positive, true negative, 
false positive and true negative obtained over the 100 models.  

Discussion 

As we have seen in the previous section, the use of the radius 
margin bound is attractive for SVM model selection with re-
spect to its computational efficiency. A cross-validation pro-
cedure can take days if the step of the variables is thin. The 
computational efficiency of the radius margin bound allows us 
to carry out more experiments with several values of the ratio 
between the positive and negative examples. 

Figure 1 – Performance metrics of the models on the 2006 
prevalence survey data.  

For the 2006 dataset, the down-sampling methodology penal-
ized the precision at the expense of recall. The obtained results 
are better than those from a previous study especially with the 
dataset S [3]. We have seen in the relations (1), (2), (3) and (4) 
that the SVM formulations are independent of the features 
present in the dataset. This was illustrated by the equivalence 
of the precision, sensitivity and accuracy between the datasets 
S and S1. The sensitivity of the three datasets S, S1 and S2 are 
equivalent and the other performance metrics of S2 are im-
proved. From these results, we propose a new method to detect 
redundancy in a dataset using the SVM algorithm: if the re-
moval of a subset of features keeps the recall unchanged while 
the other performance measures are improved then the subset 
of features has a negative interaction with the others. Many 
experiments are needed to confirm this proposal.  
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Table 1 - Best parameters C and Sigma according to the datasets and the initialization points on the dataset S, S1 and S2 

  Dataset S Dataset S1 Dataset S2 
  Init 1 Init 2 Init 3 Init 4 Init 1 Init 2 Init 3 Init 4 Init 1 Init 2 Init 3 Init 4 

Mean 3.395 0.678 1.152 0.577 0.406 0.408 0.392 0.400 1.273 0.363 0.362 0.358 
Median 0.555 0.556 0.561 0.549 0.389 0.388 0.391 0.397 0.356 0.350 0.349 0.348 C

 

Std dev 21.529 0.445 4.173 0.128 0.085 0.077 0.051 0.060 7.914 0.065 0.081 0.061 
Mean 0.069 0.067 0.068 0.065 0.199 0.199 0.198 0.197 0.232 0.230 0.230 0.227 

Median 0.066 0.065 0.071 0.064 0.189 0.194 0.193 0.193 0.205 0.201 0.204 0.199 

Si
gm

a 

Std dev 0.041 0.038 0.040 0.029 0.086 0.085 0.076 0.082 0.128 0.124 0.115 0.108 
Abs(Covariance 

(C,Sigma)) 
0.1906 0.005 0.035 0.002 0.0001 0.002 0.000 0.000 0.2123 0.001 0.002 0.002 

Table 2 - Results obtained when applying the best parameters on the prevalence datasets of the year 2006, 2007 and 2008 according 
to the number of features in datasets S, S1, and S2 

 2006  2007  2008 
A1 L+ L-  A2 L+ L-  A3 L+ L- 

P+ 54 84  P+ 69 35  P+ 57 35 

P- 12 404  P- 84 1340  P- 99 1276 

F-MEASURE 0.5297  F-MEASURE 0.6008  F-MEASURE 0.6270 

PRECISION 39.29%  PRECISION 66.35%  PRECISION 61.96% 

SENSITIVITY 81.29%  SENSITIVITY 54.90%  SENSITIVITY 63.46% 

SPECIFICITY 82.78%  SPECIFICITY 97.45%  SPECIFICITY 97.33% 

D
at

as
et

 S
 

ACCURACY 82.60%  ACCURACY 92.21%  ACCURACY 90.87% 
B1 L+ L-  B2 L+ L-  B3 L+ L- 

P+ 55 84  P+ 60 37  P+ 56 40 

P- 11 404  P- 93 1338  P- 100 1271 

F-MEASURE 0.5377  F-MEASURE 0.6132  F-MEASURE 0.6108 

PRECISION 39.79%  PRECISION 61.86%  PRECISION 58.33% 

SENSITIVITY 82.88%  SENSITIVITY 60.78%  SENSITIVITY 64.10% 

SPECIFICITY 82.79%  SPECIFICITY 97.31%  SPECIFICITY 96.95% 

D
at

as
et

 S
1 

ACCURACY 82.80%  ACCURACY 91.49%  ACCURACY 90.46% 
C1 L+ L-  C2 L+ L-  C3 L+ L- 

P+ 54 77  P+ 65 41  P+ 62 44 

P- 12 411  P- 88 1334  P- 94 1267 

F-MEASURE 0.5547  F-MEASURE 0.5936  F-MEASURE 0.5936 

PRECISION 41.87%  PRECISION 61.32%  PRECISION 58.49% 

SENSITIVITY 82.13%  SENSITIVITY 57.52%  SENSITIVITY 60.26% 

SPECIFICITY 84.27%  SPECIFICITY 97.02%  SPECIFICITY 96.64% 

D
at

as
et

 S
2 

ACCURACY 84.02%  ACCURACY 91.56%  ACCURACY 90.59% 
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With respect to our longer-term objective and with the features 
existing in S2 we can expect to have 41.87% true positive cas-
es, which represent 82.13% of all infected patients when we 
build the model with the 2006 data. When the models were 
applied to datasets from 2007 and 2008, the “profile” of the 
performance changed: the sensitivity goes down considerably 
while the other performance measures increase. For the 2007 
data, with the features in S2 we retrieved 61.32% true positive 
cases representing only 57.52% of infected patients. This dras-
tic change of the performance measures can be explained as a 
consequence of the effectiveness of the prevention measures of 
the hospital. In other words, the prevention measures did not 
reduce the prevalence rate (around 10% from 2006 to 2008) 
but changed the signs and symptoms importance in our data-
sets and/or the risks of contracting the infections. A quick 
measure of the information gain followed by a chi-square fil-
tering on the 3 datasets, as in [3] while we created the dataset 
S1, highlights a change in the order of the attributes and the 
appearance of new important ones. In machine learning this 
phenomenon is called “concept drift” [10]. Usually, the con-
cept drift makes the model built on old data inconsistent with 
new data. If we want to use SVM to achieve our long-term 
objective, we need to take into account concept drift and im-
plement, for example, an incremental method proposed in [11] 
i.e. exploiting the models build on previous prevalence survey 
datasets to predict actual cases.  

Another important point in the analysis of the data warehouse 
data to support an automated prevalence system is the number 
of features to be extracted from the data warehouse, which was 
the topic of our previous study. A McNemar test (with Bon-
feroni’s adjustment) was carried out in order to compare the 
performance obtained on the datasets S, S1 and S2 of years 
2007 and 2008. This test indicates that the features present in 
S provide the best performance followed by S2. This indicates 
that if all the information of S can not be acquired for a new 
patient we have to use only those present in the dataset S2 (and 
not S1). 

Conclusion 

This study allows evaluating the robustness of SVM in a situa-
tion where the distribution of the features is changing over 
time. The sensitivity decreases and the other metrics increase 
when we apply a model build from datasets of the year Y on 
datasets of the year Y+1 and Y+2. This situation allows high-
lighting the effectiveness of the preventive measures taken 
after the prevalence survey in year Y. The use of the radius 
margin bound to select the SVM parameters was effective and 
allows us to carry out more experiments with respect to the 
manipulation of the ratio of positive and negative cases. We 
propose a new method to find redundant subsets of features in 
a dataset. We also found that the features present in S or S2 
are necessary to build models. However it would be better to 
investigate the performance obtained using a dataset S3 in-
cluding only common features obtained after the application of 
the information gain followed by a chi-square filtering on the 
prevalence datasets from the year 2006, 2007 and 2008. In the 
future, we plan to create models focusing on precision rather 

than the recall by using an asymmetrical misclassification cost. 
The main challenge is the adaptation of the radius margin 
bound for asymmetrical misclassification cost. 
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