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Abstract  

We discuss a new approach to patients’ adherence to enhance 

to their medication-taking regimen by developing a context-

aware alerting system that would optimize the expected utility 

of alerts. Each patient’s instantaneous context is assessed 

using a real-time sensor network deploying a variety of sen-

sors. The alerts are generated to optimize the expected value 

to the patient. This paper is focused on the initial assessment 

of the utility of alerts, including the tradeoff between effec-

tiveness and annoyance. 
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Introduction 

Medication adherence, defined as adherence to a plan mutu-
ally agreed upon between a patient and his or her primary cli-
nician, is key in therapy as well as in clinical trials of new 
drugs. Insufficient adherence to the planned medication regi-
men can obviously have a significant impact on the efficacy of 
care. Population-based studies of medication taking in aging 
patients and in those with chronic diseases have shown that 
medication non-adherence leads to increased hospitalization 
and mortality [1-4].   One population-based study found that 
drug-related visits accounted for 12.6% of all emergency 
room visits, with 19% of these visits being directly related to 
medication non-adherence [5]. Non-adherence is of particular 
concern in clinical drug trials, where good adherence is essen-
tial to accurately assessing the safety and efficacy of the drug 
[6, 7].   

Since more than 3 billion prescriptions worth $203 billion are 

dispensed annually in the USA [8], strategies to improve me-

dication adherence have the potential to both reduce health 

care costs, and to significantly improve health outcomes. In a 

meta-analysis of intervention studies to improve medication 

adherence, McDonald and colleagues found that most studies 

had only a modest effect, and the most successful studies in-

volved a variety of interventions including information, self-

monitoring, counseling, and reminders. These interventions 

included behavioral, cognitive, and social aspects, and no sin-

gle characteristic of the interventions led to improved adher-

ence or outcomes [9].  Kripalani and colleagues also found 

that although 54% of interventions led to some improvement 

in adherence, only very small improvements, if any, were seen 

in clinical outcomes[10]. Thus, while it is clear that strategies 

to improve adherence are needed, it is still not obvious which 

strategies are most effective.   

Prior research studying patients’ adherence to medication tak-

ing regimens has been plagued by technical limitations. Even 

the measurement of adherence has been a difficult problem 

because of the researchers’ frequent reliance on subjective 

reports of the patients’ behaviors [11, 12] or on pill counts 

[11, 13, 14].  These reports are often unreliable because of 

patients’ memory lapses and sometimes because of their un-

willingness to admit missing medications. These problems are 

exacerbated in older populations because of the combination 

of typically complex medication-taking regimens and a fre-

quent decline in cognitive abilities, such as memory and ex-

ecutive functions [15, 16].   

Two problems must be solved in order to improve patients’ 

adherence to their medication plans. The first one concerns 

our ability to assess objectively any individual’s adherence to 

their plan. The second problem involves the development of 

effective and acceptable alerting and reminding systems.  

We and other researchers have demonstrated the feasibility of 
automatically assessing medication taking behaviors [13, 17].    
This assessment is generally based on various technological 
solutions whereby sensors detect the opening and closing of 
medication containers.  The differentiating feature of the tech-
nology investigated in our prior study is that the medication 
dispenser is wirelessly connected to a local area network and 
permits medication-taking behaviors to be monitored in real 
time. As described below, this feature is important in order to 
make the alerting system aware of the patients’ medication-
taking behaviors.   We note that this type of assessment tech-
niques is limited to sense only patients’ interactions with the 
medication dispenser. Although opening the dispenser does 
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not guarantee medication taking, this technique is more reli-
able than the approaches based on self-reports or pill counts.  

 

With very few exceptions [18], most of the existing reminding 
and alerting systems generate alerts at fixed time points pre-
scribed by the medication taking regimen. Although these 
have been shown to be useful, they frequently fail to achieve 
adherence for a variety of reasons, mostly associated with the 
patients’ context and concurrent activities. For example, if the 
patient is involved in various concurrent activities such as 
sleeping, telephoning or is not near the medication dispenser 
when the alert is generated, he may not respond to the alert.  
In addition, if the alerting system is not aware whether or not 
the patient took the medication, it cannot generate follow up 
alerts.  

To mitigate these problems, we have recently prototyped and 

investigated a context aware system and compared it to a time 

based approach [19-21]. The investigated system used a vari-

ety of sensors situated in the patients’ homes and intercon-

nected by a real-time sensor network designed to assess their 

state, and used a rule-based approach to infer the patients’ 

state and to generate context aware alerts. The results of this 

rather limited study suggested the potential of context-based 

reminding, but the study was limited by the choice of the type 

and intensity of alerts.  

The key challenge for this work is to develop techniques and 

supporting technology that would remind the patient at times 

when the patient could act on the reminder, and that the re-

minder would be most effective and minimally annoying. It 

would not be hard to generate alerts that would be effective in 

forcing the medication-taking behavior. For example, one 

could theoretically install extreme alerts such as a siren used 

in emergency vehicles that would be very difficult to ignore.  

The problem is that most patients would not tolerate such an-

noying devices and would turn them off. The selection of the 

most effective alerts is, therefore, a compromise between the 

benefits of the intensity of alerts and their annoyance.  

Since the medication-taking behavior is a stochastic process, 

this optimization can be conveniently cast in a decision-

theoretic framework. This paper describes a decision-theoretic 

framework to implement such a system based on a state repre-

sentation of the activities of the patient, the prompting actions 

and the patient’s responses. The state of the patient is inferred 

from a variety of sensors that represent indirect measurements 

of his or her activities.  Therefore, a framework appropriate 

for optimization should be based on a partially observable, 

possibly Markov, decision process (POMDP) [22]. However, 

for the sake of simplicity we illustrate the approach using a 

simpler, one step maximizing utility approach.  The main fo-

cus of this paper is to describe the general approach, the theo-

retical framework and its feasibility, with a particular focus on 

utility assessment. The ability to assess the utility of the alerts 

is a key problem in making this approach feasible. 

Utility-Based Medication Adherence Framework 

Metrics of Adherence 

There are numerous ways to describe the degree of adherence.  
For example, the most frequent metric for adherence is the 

probability of taking medications within and interval ± 90 
minutes of the prescribed time.  Another, more sensitive met-
ric is the average deviation from the nominal time. The met-
rics should also include deviations in the type of medication 
or the dose, i.e., taking the wrong amount or wrong drug. For 
the purpose of this paper, we focus on the temporal devia-
tions. 

Context and State Assessment 

One of the key components of a principled, expected utility-
based approach involves a representation of the patient’s ac-
tivity that would in turn enable one to estimate the probability 
that he will take the medication. For the sake of computational 
simplicity, i.e., computability, we assume that a patient’s ac-
tivities can be categorized into a small number of discrete 
states, .q The state of a patient is inferred from a set of con-

textual measurements implemented as sensors located in the 
patient’s home.  The set of sensors may include a variety of 
devices ranging from passive motion sensors, contact 
switches, to range measuring systems. The contextual meas-
urements are then used in combination with an appropriate 
model to infer the state of the patient and ultimately the likeli-
hood of taking a medication.  

Explicit Costs and Benefits 

As described in the introduction, one of the most important 

knowledge acquisition and representation tasks in designing a 

medication reminding system has to do with the explicit in-

corporation of the costs and benefits associated with all ac-

tions that the reminding system might perform.  For example, 

simply detecting that a patient in the home has probably for-

gotten to take an evening dose of a particular drug does not 

necessarily imply that a loud alarm should ring.  Factors to 

consider in designing a protocol for reminding include: 

• Reminder Intensity - Reminders can be delivered via vari-

ous media at various stimulus intensities and modalities 

(text / light display on medication caddy → text / soft 

beep → louder beep on watch → text message on cell 

phone → phone message → phone call).  Each of these 

approaches to reminding is associated with a different 

level of annoyance to the user and different probability of 

being noticed and attended to. 

• Length of time since target time – Reminding too early or 

too late has a higher cost that reminding on time.  How-

ever, reminding prior to when the user was going to take 

the medication anyways has a fairly high annoyance cost. 

• Importance of the specific medication – It is more impor-

tant to remind a user of a critical drug (e.g., anticoagu-

lant) as compared with a noncritical pill (e.g., vitamin).  

Higher annoyance factors will be tolerated for more criti-

cal medications.  In addition, for some medications, the 
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timing is more critical (e.g., 4 times / day) versus others 

that could be taken any time of day. 

• Context for the user – Reminders that account for a user’s 

location and availability to take the medication will be far 

more successful than a strictly time-based reminder.  For 

example, there is a high utility for reminding when the 

user is near the medication caddy and when they are oc-

cupied with conflicting activities (e.g., sleeping, visiting 

with others, in the middle of a meal). 

Our approach to medication reminding is cast in an expected 

utility framework for determining when and with what type or 

“media” and intensity or “strength” to remind a user to take a 

medication.  More formally, the general expression for the 

expected utility has the form 

 [ ] ( ) ( )
1

, | , ,
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q

U A C p q A C u A C
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where U  is the expected utility of an alerting action ( )A t  

when the patient is in state q and context ( ).C t ( )A t  is one 

of  possible actions generated by the alerting system and may 
include visual and auditory modalities as well as different 
alert intensities. We note that one of the possible actions is 

A =∅ or “do nothing.”  The context ( )C t  is a vector that 

represents all available measurements including motion sen-

sors,  for all times t t′ ≤ .  In general, the state of a patient is 

related to the instantaneous activity, such as sleeping, but in 
may also be an abstract representation of sensor data. 

The probability that the patient is in state q given an action 
and contextual measurements is denoted by p. This embodies 
the two levels of uncertainty: (1) uncertainty due to the indi-
rect measurements of the patient’s state and (2) the uncer-
tainty of taking the medication, given the state. Within the 
expected utility framework in Equation (1), the latter uncer-

tainty is incorporated in the utility ( ),
q

u A C . 

To illustrate the approach, we assume that the patient is in one 

of two states: 0q =  and 1q = representing the failure and 

success in taking the medication, respectively. When the pa-
tient is in state 1, the time T when he takes the medication is a 

random variable with a probability distribution ( )1
F T . As-

suming that the only available sensor is the medication dis-
penser, that indicates that a medication was not taken by time 
t, it is possible to compute the probability that the patient is in 
the “forgetting” state by 
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demonstrating that as time increases and medication is not 
taken, the probability that the patient will forget increases and 
consequently, the expected utility of an alert  increases. With 
information from additional sensors, it is possible to increase 
the number of possible states and improve the accuracy of this 
assessment.  

Estimation of Time Probability Distribution 

As shown in Equation (2), an essential component of the max-
imum utility calculation is the probability distribution of times 
that the medication is taken without prompting. In order to 
implement this approach, it was necessary to estimate this 
distribution by monitoring individuals taking medications 
without any alerts. Such estimates were obtained in a baseline 
condition of a prior study [19, 20].  Because of the cyclic na-
ture of time, i.e., daily periodicity, we developed a novel ap-
proach to the density estimation process. For the purpose of 
the present discussion, however, we performed a maximum 
likelihood fit using beta distributions. 

Empirical Estimation of Alert Utilities 

The goal of this laboratory study is to estimate the utility of 
alerts and prompts. The utility assessments includes the bene-
fits (positive utility) representing the effectiveness of remind-
ing the patient to take his or her medication, as well the cost 
(negative utility) associated with the alert annoyance and fail-
ure to achieve the desired result.  Our current study was de-
signed to investigate several modalities, device form-factors 
and signal intensities of the prompting systems. The main de-
pendent measures were subjective judgments in response to 
the various system reminders. In addition to the demonstrated 
prompts, subjects were asked to rate a number of other 
prompting devices 

Methodology 

In order to approximate real-life distractions, we introduced 
new methodology based on dual task. The dual task consisted 
of a background continuous activity (watching a comedy 
show) which was occasionally interrupted by the primary task. 
The computer generated the video as well as the signals that 
triggered the alerts. 

When an alert was generated, the participants’ task was to 
notice the alert and to respond to the alert by walking over to 
a medication dispenser and opening a specific compartment. 
The medication dispenser was designed to record both the 
time of the interaction and the specific compartment that was 
opened. The collected information comprised quantitative as 
well as qualitative data.  In addition to the objective data (time 
duration and the identity of the medication tracker compart-
ment that was opened), the participants were asked to judge 
the annoyance of the alerts generated by the devices included 
in the experimental part of the study.  In addition, following 
the active experiment, they were asked to rate several devices 
that were not part of the experiment.  The different devices 
were presented as much as possible in random order for dif-
ferent subjects. 

Prompting Devices 

The prompting devices used in this experiment were selected 
to cover a wide range of form factors and modalities. We used 
a combination of commercially available devices and our en-
hanced alerting devices. The following is a list of these de-
vices and the corresponding modality: 
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1. Vibrating modality, e.g., watch 
a. Adult version of a watch  
b. Pediatric version of a watch 
c. Vibrating Pendant 
d. Vibrating mobile telephone 

2. Auditory alert watch with informational display indi-
cating the action to be performed as a part of the sec-
ondary task. 

3. Medication dispenser with audio-visual alert mecha-
nism  

a. Visual alerts only 
b. Sounds only 

4. PDA with auditory and visual (text) alerts and mes-
sages 

5. Cell phone with voice and/or text messages  
6. Office phone alerts 
7. Television set (captioned message or full screen) 

Procedure 

The participants were recruited from a pool of elderly subjects 
participating in other, ongoing experiments.  They were intro-
duced to the study using a brief video in which an experi-
menter described the purpose, the task, and the procedure.  
During the video introduction, the participants were asked to 
adjust the level of the audio to a comfortable level – this was 
also used to assess their hearing. During the introduction, the 
participants also learned to use the remote control that enabled 
them to start and stop the television show.  Following this 
introduction, the participants were consented. 

The experiment was initiated by the participants using the 
remote control that started the television show. The partici-
pants were presented the alerts, namely the alert modality and 
type of signal in a pseudo-random order to reduce the poten-
tial of sequential effects.  Following the experimental proce-
dure described in the Methodology section above, the partici-
pants were asked to rate the devices in several ways including 
rank-ordering, as well as using a Lickert scale. In particular, 
they were asked to rate the effectiveness of each alert and its 
annoyance.  In order to ascertain that the participants paid 

attention to the television show, they were also asked to an-
swer a number of questions about selected details of the show. 

Results 

In this section we first analyze the data from the empirical 
utility assessment study and then combine them with the data 
from our prior study  [19, 20].  The results of the annoyance 
ratings, combined across subjects are shown in Figure 1. Simi-
larly, Figure 2 represents the summary of the effectiveness 
ratings that appeared to be consistent with subjects’ behaviors 
during the study. Although there appears to be some agree-
ment, there is clearly significant inter-subject variability.  A 
large component of this variability was due to the differences 
in individual preferences as ascertained by their comments 
and responses to questionnaires.  Using the estimates of the 
utility and probability distributions from our pilot studies, we 
simulated a variety of alerting situations in order to determine 
important details of a potential implementation. An example 
of such an issue is the notion of a refractory period.  In par-
ticular, after the system issues an alert, the instantaneous an-
noyance due to potential repetition of the same alert is signifi-
cantly higher. The actual value of this increase and its tempo-
ral course of the refractory period needs to be investigated in a 
spate study.  

Conclusion 

We have developed a new decision-theoretic framework and 
approach to optimize reminding and alerting using contextual 
information. Our data from several pilot experimental studies, 
in combination with this theoretical framework, suggest that 
an optimal, utility-based approach is possible and may im-
prove medication-taking adherence. Additional improvement 
could be gained by including aspects such as the refractory 
period and the utility of interruption [23]. However, this study 
offers evidence to show the feasibility of integrating home 
monitoring data to infer patient context for reminding systems 
and also demonstrates the importance of incorporating patient 
preferences for alerts and reminders.  Future directions for 
work in this area include linking medication adherence data 
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Figure 1- A box plot of the annoyance ratings of different  

device for 10 subjects. 
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Figure 2- A box plot of the effectiveness ratings of different  

devices.  
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with personal health records and electronic medical records 
for broader health management use. 
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