
Processing Gradual Information with Fuzzy Arden Syntax

Thomas Vetterleina, Harald Mandlb, Klaus Peter Adlassniga,b

a Section for Medical Expert and Knowledge-Based Systems, Medical University of Vienna, Austria
b Medexter Healthcare GmbH, Vienna, Austria

Abstract

The programming language Arden Syntax is especially
adapted to the needs of computer-based clinical decision sup-
port. Recently, an extension of Arden Syntax, named Fuzzy
Arden Syntax, was proposed by the authors. Fuzzy Arden Syn-
tax is a conservative extension of Arden Syntax and offers
special functionality to process gradual information. The
background is the observation that in medicine we frequently
deal with statements which are neither clearly false nor clear-
ly true but hold to some intermediate degree. In this paper, we
demonstrate under which circumstances a Medical Logic
Module (a program unit written in Arden Syntax) may show
unintended behavior and how the situation can easily be im-
proved by means of the possibilities offered by Fuzzy Arden
Syntax. To this end, an example from the domain of nosoco-
mial infection control is discussed in detail.

Keywords:

Clinical Decision Support Systems, Arden syntax, Fuzzy logic,
Nosocomial infections.

Introduction

An important aim in medical information sciences is to define
standards to represent clinical data in a computer-interpretable
form. This task concerns various levels of abstraction and is
generally difficult. We may mention, for example, current ef-
forts to establish standards for the structure of an electronic
health record, to establish medical terminologies on a sym-
bolic level, or to define computer-interpretable medical proce-
dures.

In healthcare, an issue which becomes the more relevant the
more data is available electronically is the automated and in-
telligent interpretation of facts concerning a patient’s course of
disease, like symptoms, signs, diagnoses, and treatment. On
the lowest technical level, this purpose is supported by a pro-
gramming language in which general clinical knowledge can
be formulated as directly as possible, minimizing the need for
the user to get familiar with technical peculiarities.

Arden Syntax

In this latter field, the developers of Arden Syntax have con-
tributed in a specific but valuable way [1]. The programming

language Arden Syntax is endowed with an (institution-
dependent) interface to a patient database, can be applied to
encode methods to interpret the data, and can be used to trig-
ger appropriate reactions in real time. Its syntax has been cho-
sen to make the program flow easily traceable. Arden Syntax
was originally developed by the American Society for Testing
and Materials in 1992 and is at present maintained by Health
Level Seven, Inc. (HL7). The document containing the official
specification [1] can be acquired from HL7; (see
www.hl7.org.)

Arden Syntax has been developed as a standard of represent-
ing general clinical knowledge. This knowledge needs to be
present in modular form; an Arden Syntax system is composed
of an unstructured set of so-called Medical Logic Modules, or
MLMs for short. Each MLM can be designed to react in real
time to some specified event, like for instance a certain change
in the patient database, in which case a message to the host
system is sent or other reactions are induced.

Fuzzy Arden Syntax

The content of an Arden Syntax MLM can be the result of a
formalization of information provided in natural language.
When mapping information contained in a text to a computer
program, even if this text is meant as a precise specification of
facts or procedures, we typically encounter the problem that
the level of precision is not sufficient to allow the formulation
of the program in a unique way. Often then, the original speci-
fication needs to be extended in an ad-hoc way. To give a sim-
ple example of what we mean, for a clinician it might not be a
problem to interpret statements like “the level of aspartate
transaminase (AST) is significantly increased” if the normal
range of AST is known; in a computer program however sharp
limits must be provided.

Conversely, if precise specifications are provided it might
sometimes not be desirable to follow them in a purely me-
chanical way. For example, consider the condition “body tem-
perature ≥ 38.0 °C”. If the actual body temperature of a patient
is, say, 37.9 °C, a clinician might hesitate to simply consider
the condition as not fulfilled or might at least argue differently
than in the situation when the temperature is 36.9 °C.

If sharp limit points are not specified or even unknown, some
extra effort will be needed to deal with this situation in auto-
mated decision support. Furthermore, if sharp limit points are

MEDINFO 2010
C. Safran et al. (Eds.)
IOS Press, 2010
© 2010 IMIA and SAHIA. All rights reserved.
doi:10.3233/978-1-60750-588-4-831

831

chosen, borderline cases will in general not be apparent in the
output: a condition “temperature ≥ 38.0 °C” will be evaluated
negative if the communicated temperature is lower than 38 °C,
and positive if it is 38 °C or higher, and information about
changes of the result under small changes of the input would
again require extra effort. It is the idea of Fuzzy Arden Syntax
to include into Arden Syntax additional functionality to make
the definition of “soft” limit points possible and furthermore to
avoid discontinuities in the results.

Fuzzy Arden Syntax was originally proposed by S. Tiffe [2]. It
has recently been further elaborated by the authors; we refer to
[3] for a complete specification. The new features have been
summarized in [4]. The present note shows the effects of these
features on the basis of a specific example.

A case study: nosocomial infection control

We will exhibit some features concerning behavior and per-
formance of Arden Syntax with or without the extension pro-
vided by Fuzzy Arden Syntax. To this end, we shall consider a
typical example of computer-based clinical decision support.

Computer-supported detection of nosocomial infections

For the surveillance of nosocomial infections in ICUs, stan-
dards have been defined [5–7]. If the relevant data is available
electronically, the possibility exists to have suspicious cases
detected automatically. For instance, at the Vienna General
Hospital, a system with exactly this purpose has been devel-
oped [8]. It is named Moni/Surveillance-ICU and based on
HELICS [5] as well as KISS [6, 7] criteria for nosocomial
infections.

Figure 1 - Definition of asymptomatic bacteriuria (UTI-C)
We shall consider the following example which is a specifica-
tion of a nosocomial infection according to [5] (coded UTI-C
there). This criterion is part of the Moni system as well. We
note that we have slightly changed the formulation of [5].

As we will see, the implementation of this rule in Arden Syn-
tax is straightforward. Arden Syntax programs are to a certain
extent self-explanatory; for this reason also the reader not fa-
miliar with Arden Syntax should be able to follow our argu-
mentation. To be sure, we will however include some basic
explanations.

An MLM has a predefined structure. The first two parts are the
maintenance category and the library category, which are not
important here. Only the third part, the knowledge category,
contains the executable program. The latter consists in turn of
several so-called slots. In particular, the data slot contains the
commands to read the relevant data from the host and possibly
additional commands to preprocess this data; in the logic slot
the decision is made if the action slot is executed. A jump to
the action slot is caused by the command conclude true,
whereas conclude false terminates execution.

The relevant slots of the knowledge category of an MLM
modeling the criterion for asymptomatic bacteriuria could look
as follows.
data:

(Patient, Date) := argument;
/* Input data: patient ID and date of stay */

Temperature :=
read {body_temperature,

Patient, Date};
/* Body temperature */

Fever := Temperature >= 38;
Urgency :=

read {urinary_urgency, Patient, Date};
/* Urge to urinate? */

Micturition :=
read {micturition, Patient, Date};
/* Increased frequency of urination? */

Dysuria :=
read {dysuria, Patient, Date};
/* Painful urination? */

Suprapubic_tenderness :=
read {suprap_tenderness, Patient, Date};
/* Suprapubic tenderness? */

Organisms_in_1_urine_culture :=
read {organ_1_urcult, Patient, Date};
/* Number of microorganisms of ≤ 2 species per
mm3 */

One_urine_culture :=
Organ_in_1_urine_culture >= 1e5;

if One_urine_culture
then Urine_culture_time :=
time of One_urine_culture;

endif;
Organisms_in_2_urine_cultures :=

read {organ_2_urcult, Patient, Date};
/* Number of microorganisms of ≤ 2 species per
mm3 in the last two cultures */

Two_urine_cultures :=
Organisms_in_2_urine_cultures >= 1e5;

if Two_urine_cultures
then Urine_culture_time :=
time of One_urine_culture;

endif;
Catheter :=

read {catheter, Patient, Date};
/* Latest indwelling urinary catheter */

;;

logic:

The following conditions must be fulfilled:

• It is not the case that the patient has fever (≥ 38.0
°C), or urinary urgency, or frequency, or dysuria, or
suprapubic tenderness.

• The patient has had

1 either a positive urine culture
(≥ 105 microorganisms/cm3 of ≤ 2 species)
 and
an indwelling urinary catheter within
7 days before the culture

2 or two positive urine cultures
(the ≤ 2 species being the same)
 and
no indwelling urinary catheter within
7 days before the culture

T. Vetterlein et al. / Processing Gradual Information with Fuzzy Arden Syntax832

if (Fever OR Urgency OR Micturition OR Dy-
suria OR Suprapubic_tenderness)

then conclude false;
endif;

if (Catheter is present
AND time of Catheter is at least 7 days
before Urine_culture_time)

then if One_urine_culture
then conclude true; endif;

else if Two_urine_cultures
then conclude true; endif;

endif;
;;

action:
write "The conditions of an

asymptomatic bacteriuria are met.";
;;

Behavior in borderline cases

We may say that this MLM reflects the specification UTI-C of
asymptomatic bacteriuria one-to-one. However, we may won-
der if this is what we want. As a matter of fact, it is easy to
construct a case where a clinician familiar with the facts ex-
pressed by UTI-C is likely to conclude differently from the
MLM. We have in mind the borderline cases; consider the
following situations:

• A patient had three positive urine cultures with the
same single species and an indwelling urinary catheter
until one day before the first positive culture; he has no
urgency, frequency, dysuria, or suprapubic tenderness
and a temperature of 38.0 °C.

• A patient had a positive urine culture and a urinary ca-
theter until seven and a half days before the culture; he
has no fever, urgency, frequency, dysuria, or suprapu-
bic tenderness.

• In the urine culture of a patient 9 · 104 microorgan-
isms/cm3 were found, the patient had two days earlier
an indwelling urinary catheter, and otherwise no fever,
urgency, frequency, dysuria, or suprapubic tenderness.

It would be easy to continue this list of cases, which have all in
common that an automated detection of an infection fails.
However, a clinician will most likely judge in all three cases
that the criterion does apply, at least to a certain extent, even if
criterion UTI-C is the only source of information.

Fuzzification of formalized clinical criteria

In computer-assisted decision support, one might certainly opt
to have information provided only in the clear cases. After all,
nobody would expect that no information about a possible
disease means that the disease is not present. On the other
hand, there are easy means to make the inference of a program
like the above MLM more flexible so as to get results also in
those cases which are not entirely conclusive on the basis of
some given formal rules. Of course then it is essential to ex-
hibit in the output explicitly that the result has restricted value.

These considerations have led to the development of Fuzzy
Arden Syntax. Note first that under Fuzzy Arden Syntax, the

above MLM would run without change of effect. That is, the
same input would lead to the same output. This is why we call
the extension “conservative”.

However, Fuzzy Arden Syntax offers convenient possibilities
to process not fully determinate truth values and to extend the
inference coded in a given MLM to borderline cases. In medi-
cine, the situation frequently occurs that facts about a patient
do not fit perfectly to the available notions. Indeed, expres-
sions like “having pain” or “being elevated” involve vagueness
in the sense that they possess borderline cases in which it is
hard or impossible, in any case unreasonable, to tell if they
apply or do not.

As the starting point, we borrow from fuzzy logic [9] the sim-
ple idea to extend the two-element set of classical truth values
to a continuous set of truth values. In classical propositional
logic, we use 0 to denote falsity, 1 to denote truth; in fuzzy
logic we use in addition any real value between 0 and 1 to ex-
press tendencies.

Examples of vague notions are immediate from the criterion
UTI-C. Urinary urgency, frequency, dysuria, suprapubic ten-
derness may in most cases clearly hold or not hold, but there
can be unclear situations as well.

The values allowed for yes-no variables in Fuzzy Arden Syn-
tax certainly include the clear “true” or “false” just like in Ar-
den Syntax. In addition, however, also values like 0.8 mean-
ing, say, “rather true” are possible. We note that if continuous
values are used for yes-no statements in the input, no changes
in the MLM are necessary.

If intermediate truth values are used, it must however be de-
termined in which way the connectives “and”, “or”, and “not”
are to be interpreted. By default, if the variable Var_1 con-
tains the value v1 ∈ [0, 1] and the variable Var_2 contains the
value v2 ∈ [0, 1], then

Var_1 AND Var_2, Var_1 OR Var_2,
NOT Var_1

will be evaluated as min{ v1 , v2 }, max{ v1 , v2 }, and 1 – v1,
respectively. Other interpretations, in particular other t-norms
[10] interpreting AND are possible.

Let us next describe the method to avoid sharp limit points.
Namely, we may replace sharp values by “soft” ones in a
straightforward way. Our above-given example can be modi-
fied as follows:
data:

[...]
Fever :=

Temperature >= 38 fuzzified by 0.5;
[...]
One_urine_culture :=

Organisms_in_1_urine_culture >=
1e5 fuzzified by 5e4;

[...]
Two_urine_cultures :=

Organisms_in_2_urine_cultures >=
1e5 fuzzified by 5e4;

T. Vetterlein et al. / Processing Gradual Information with Fuzzy Arden Syntax 833

[...]
;;

logic:
if (Fever OR Urgency OR Micturition OR Dy-

suria OR Suprapubic_tenderness)
then conclude false;
endif;

if (Catheter is present AND time of Cathe-
ter is at least 7 days fuzzified by 2
days before Urine_culture_time)

then if One_urine_culture
then conclude true; endif;

else if Two_urine_cultures
then conclude true; endif;

endif;
;;

As to be expected, the expression fuzzified by is used to
create some tolerance around a sharp real value. Formally, the
expression
38 fuzzified by 0.5

Figure 2- Example of a triangular fuzzy set

We recall that a fuzzy set is a mapping u from some universe
of discourse M to the real unit interval [0, 1]. u typically mod-
els a natural-language concept, and for any T ∈ [36, 42], the
value u(T) is then the degree to which T is in accordance with
the concept modeled by u. The universe is typically �, the re-
als, and in Fuzzy Arden Syntax, we may use any fuzzy set over
� provided it is piecewise linear, at each point left- or right-
continuous, and constant outside a finite interval.

A fuzzy set like the displayed one can be used for a compari-
son: typically, a number like Temperature, which in our
context is also called a crisp number, is compared with a fuzzy
set, also called a fuzzy number. The expression
Fever:= Temperature >= 38 fuzzified by 0.5

no longer returns necessarily one of the sharp truth values
true or false. The displayed case rather works as follows;
let T be the value in Temperature. If T ≥ 38, then the result
is 1, or true, in accordance with the original MLM. If T is
just slightly smaller than 38, the resulting value will still be
close to 1 and in particular not reflect falsity; in the sequel the
same consequences will be drawn, but with reduced weight.
Falsity is the calculated outcome only if T ≤ 37.5. This follows
from our choice to fuzzify by 0.5. We conclude that Fever is
no longer a two-valued, but a many-valued concept, with the
effect that jumps from one extreme to the other are avoided.

Figure 3 – Fuzzy logic and temperature

We see in particular that the specification of the conditions
under which Fever applies requires more than determining
one delimiting value. It is rather required to determine when
this concept clearly applies and when this concept clearly does
not apply. Accordingly the width of the transitional region
must be set.

The same can be said mutatis mutandis for the variables
One_urine_culture and Two_urine_cultures in our
example.

The next question is what happens when an if-then-else con-
struct depends on a many-valued condition. In Fuzzy Arden
Syntax, the program splits. If the condition is evaluated to t
such that 0 < t < 1, the “if” block and the “elseif” block are
executed in parallel. To any point in the program, there is as-
sociated a program weight; prior to the execution of the two
branches this weight is multiplied by t or 1−t, respectively.

Test case

We shall next illustrate the effect of this concept. To this end,
we shall check the behavior of the above Fuzzy Arden MLM
with some specific values, and we will see if the result is in
accordance with the conclusions which we would draw intu-
itively.

Consider the following scenario. The patient does not suffer
from urgency, micturition, dysuria, or suprapubic tenderness,
and has a temperature of 37.6 °C; a catheter is reported to have
been removed eight days before the first urine culture; he has
two clearly positive urine cultures where however the number
of microorganisms of coinciding species is only 6 · 104.

Let us guess how a clinician would judge this situation in view
of the criterion UTI-C. The condition of UTI-C about the ab-
sence of symptoms is practically fully fulfilled; the height of
the body temperature is not significant. Furthermore, the
catheter was removed eight days, so roughly one week, before
the first positive culture. Finally, there is some evidence of a
second positive culture. All in all, the picture is presumably
not entirely clear but rather well compatible with the condi-
tions of UTI-C. In any case, the decision seems natural that the
situation should be further examined.

Let us now compare these informal considerations with the
result provided by the Fuzzy Arden MLM. We shall trace, step
by step, the execution of the logic slot.

The expression
Fever OR Urgency OR Micturition OR
Dysuria OR Suprapubic_tenderness

returns, if OR is interpreted according to default, the largest of
the values of the conjuncts. We have that Fever is 0.2 and
Urgency, Micturition, Dysuria, and Suprapu-
bic_tenderness are all 0; thus the result is 0.2.

is a triangular fuzzy set, namely the following one:

T. Vetterlein et al. / Processing Gradual Information with Fuzzy Arden Syntax834

The program splits; however, the line conclude false, to be
executed with weight 0.2, terminates the MLM. So the remain-
ing part of the program is continued with weight 1− 0.2= 0.8.

Next, we have that the expression
Catheter is present AND time of Catheter is at
least 7 days fuzzified by 2 days

is evaluated 0.5. Consequently, the program splits again; the
if block and the else block are executed in parallel, both
with weight 0.8 · 0.5 = 0.4. In the first branch, the program
executes conclude true under the condition
One_urine_culture. As this variable contains the value
true, i.e., 1, the action slot is executed with weight
0.4 · 1 = 0.4. In the second branch, the program executes con-
clude true under the condition Two_urine_cultures.
This variable contains the value 0.2 and the action slot is exe-
cuted as well, but in this case with weight 0.4 · 0.2 = 0.08.

The action slot sends to the host the message that asympto-
matic bacteriuria is present. This message will be endowed
with a value expressing the fact that the program weight is
decreased. In our case, the host will get independently twice
the same message, once with weight 0.4 and once with weight
0.08; it could add up the two values 0.4 + 0.08 = 0.48. So as
the final result, we are provided a message together with a
truth value of only 0.48.

The value 0.48 implies that the message is to be understood
with great caution. We conclude that the message is weaker
than the informally drawn conclusion. But in accordance with
our informal considerations it is clearly suggested that the situ-
ation needs to be examined.

We may finally observe that the corresponding Arden Syntax
MLM would not report anything. We furthermore note that the
modified MLM encoding UTI-C is not essentially longer or
more complicated than the original one.

Conclusion

Clinical decision support systems depend on clear specifica-
tions: criteria must be provided which do not leave room for
interpretation. This is the nature of a computer program as
opposed to the way a human reasons who always allows some
tolerance in considerations. An extended version of Arden
Syntax, named Fuzzy Arden Syntax, aims at reducing the un-
desirable effects of sharp delimitation of situations.

Fuzzy Arden Syntax is based on the principles of fuzzy logic
and uses a continuous set of truth values, namely the real unit
interval. We have demonstrated on the basis of an example, a
criterion of a nosocomial infection which is in practical use,
the benefits of this approach. Answers to yes-no questions, like
the presence of a specific symptom, need not be decided if
they are actually not well decidable. Furthermore, values sepa-
rating the normal from the abnormal range of a parameter can
be specified in a rough manner. Finally, the changes of an Ar-
den Syntax program to benefit from these possibilities are mi-
nimal.

If the concepts of fuzzy logic are fully applied, there are no
more any discontinuities in the output. However, since the in-
ference becomes more sophisticated, also the output is possi-
bly more differentiated. Namely, the user might be presented a
list of alternatives together with weights. But this is not to be
considered as a price to pay; it is just natural in the present
context. When an input parameter is in a borderline area, more
than one alternative in the output should be expected.

The work on the Fuzzy Arden compiler is in progress; the
compiler will be available in the first quarter of 2010. The
application of Fuzzy Arden Syntax in the above-mentioned
system Moni/Surveillance-ICU is scheduled and extended
practical experiences can be expected in the course of 2010.

References
[1] Health Level Seven. The Arden Syntax for Medical Logic Sys-

tems, Version 2.7, Ann Arbor, MI: Health Level Seven, Inc.,
2008.

[2] Tiffe S. Fuzzy Arden Syntax: Representation and Interpretation
of Vague Medical Knowledge by Fuzzified Arden Syntax, Ph.D.
Thesis, Vienna: Technical University Vienna, 2003.

[3] Vetterlein T, Mandl H, and Adlassnig KP. Vorschläge zur Spezi-
fikation der Programmiersprache Fuzzy Arden Syntax (Proposal
of a specification of the programming language Fuzzy Arden
Syntax – in German), Technical Report, Vienna: Medical Uni-
versity of Vienna, 2008.
http://www.meduniwien.ac.at/user/
thomas.vetterlein/articles/FuzzyArdenSpezif.pdf.

[4] Vetterlein T, Mandl H, and Adlassnig KP. Fuzzy Arden Syntax:
a fuzzy programming language for medicine. Artif Intell Med
(2010), doi:10.1016/j.artmed.2010.01.003.

[5] Hospital in Europe Link for Infection Control through Surveil-
lance (HELICS) ed. Surveillance of Nosocomial Infections in In-
tensive Care Units, Protocol version 6.1; 2004. http://helics.univ-
lyon1.fr/protocols/icu_protocol.pdf.

[6] Garner JS, Jarvis WR, Emori TG, Horan TC, and Hughes JM.
CDC definitions for nosocomial infections. In: Olmsted RN, ed.
APIC Infection Control and Applied Epidemiology: Principles
and Practice. St. Louis: Mosby, 1996; pp. A-1–A-20.

[7] Robert-Koch-Institut Berlin, ed., Definitionen nosokomialer
Infektionen (CDC-Kriterien). 6th ed. Berlin: MB-Medienhaus
Berlin, 2008.

[8] Adlassnig KP, Blacky A, and Koller W. Fuzzy-based mosoco-
mial infection control. In: Nikravesh M, Kacprzyk J, and Zadeh
LA, eds. Forging New Frontiers: Fuzzy Pioneers II. Berlin:
Springer, 2008; pp. 343-50.

[9] Zadeh LA. Fuzzy sets. Inform Contr 1965: 8: 338-53.

[10]Klement EP, Mesiar R, and Pap E, Triangular Norms. Dor-
drecht: Kluwer, 2000.

Address for correspondence
Thomas Vetterlein, Section for Medical Expert and Knowledge-
Based Systems, Medical University of Vienna, Spitalgasse 23, 1090
Vienna, Austria; E-mail: thomas.vetterlein@meduniwien.ac.at.

T. Vetterlein et al. / Processing Gradual Information with Fuzzy Arden Syntax 835

