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Abstract 

Task analysis is a valuable research method for better under-
standing the activity of anaesthetists in the operating room 
(OR), providing evidence for designing and evaluating im-
provements to systems and processes. It may also assist in 
identifying potential error paths to adverse events, ultimately 
improving patient safety. Human observers are the current 
‘gold standard’ for capturing task data, but they are expen-
sive and have cognitive limitations. Our current research – 
Towards Automated Detection of Anaesthetic Activity 
(TADAA) - aims to produce an automated task analysis sys-
tem, employing Radio Frequency Identification (RFID) tech-
nology to capture anaesthetists’ location, orientation and 
stance (LOS), and machine learning techniques to translate 
that data into low-level and high-level activity labels. In this 
paper we present details of the system design and promising 
results from LOS sensing testing in laboratory and high-
fidelity OR simulator settings. 
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Introduction 

Anaesthesia, generally regarded as more complex than avia-
tion [1], seems a suitable and worthwhile field for the applica-
tion of similar techniques. Numerous studies have found that 
human factors, such as poor record keeping, ignorance of 
standards or failure to adhere to them, and lack of communica-
tion, are major contributors to preventable adverse events dur-
ing anaesthesia [2]. 

Weinger, an authority in anaesthetic task analysis, sums up his 
motivation: “A scientific description of the anesthesiologist’s 
task patterns and workload would aid in our understanding of 
the nature of the anesthesiologist’s job and provide a more 
rational basis for improvements” in processes, equipment, OR 
layout, training and other aspects of anesthesia [3]. Having a 
‘scientific description’ is particularly important in medicine, 
with its requirement for improvements to be evidence-based 
[4] . However, existing methods for anaesthetic task analysis 
are limited in their ability to produce scientific data in a time-
ly, cost-effective way. 

This provides the motivation for our current research project, 
Towards Automated Detection of Anaesthetic Activity 
(TADAA). In the next section we briefly introduce anaesthe-
sia, review recent literature on anaesthetic task analysis and 
automated activity detection, and describe our prototype 
TADAA system. We then present initial results from evalua-
tion of the system in our lab and in simulated anaesthetic pro-
cedures. Finally we outline outstanding issues and plans for 
future development. 

In New Zealand hospitals there is always one anaesthetist pre-
sent during an operation. They are assisted by a technician and 
possibly a nurse. Additional anaesthetists may be present as 
supervisors, trainees, or assisting in complex procedures. 

Anaesthetic Task Analysis 

Anaesthetists currently record some of their own activity in an 
anaesthetic record completed for each procedure. While this is 
a clinically important task, treating the patient always takes 
precedence. Thus parts of the record are often completed from 
memory, or with normalised activity [5], and its accuracy can-
not be guaranteed. 

When more rigorous activity recording is required, the gold 
standard approach is to employ independent observers [3, 6]. 
The observers, either in the OR or viewing video recordings, 
classify anaesthetists’ activity into a number of a priori cate-
gories. A typical list of categories is shown in Table 1. 

Table 1 - Anaesthetic activity categories used in [3] 

Manual  - Prepare drugs, Line placement, Give drugs, 
Mask ventilation, Bag ventilation, Suction, Manipulate 
airway, Intubation, Laryngoscopy, Adjust anaesthetic 
machine, Adjust monitors, Adjust IV 

Communication - Attending, Nurse, Surgeon, Patient, 
Teaching, Other 

Observing - Anaesthetic machine, Monitors, Patient, 
Airway, IVs, Surgical field, Other 

Other – Anaesthetic record, Position patient, Clean up, 
Other 
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But human observers are not the ideal instrument for recording 
scientific data. They may make errors when fatigued, dis-
tracted, or their view is obstructed. Maintaining intra- and in-
ter-observer consistency in classifying activities can be diffi-
cult [7].  

Automated Activity Detection 

Automation in anaesthesia is nothing new. Computerised sys-
tems that record patients’ vital signs, and raise alarms when 
certain conditions occur, are widespread [5]. However systems 
to record anaesthetists’ activity are rare, with none seeming to 
have progressed beyond very limited use [11, 13-15].  

Activity recognition systems can be characterised in various 
ways, including: 

• The type of sensor(s) used. 

• Whether sensors are part of the environment or worn 
or carried by the research subject(s). 

• Whether sensors detect body motion, location or 
movement around an environment, or object use. 

• Whether sensor data is analysed for activity using a 
priori rules, or machine learning. 

These were the four aspects that most informed the design of 
our TADAA system. 

Methods 

TADAA System Design 

We selected RFID as the most suitable sensor technology. The 
TADAA system uses RFID to perform location sensing. An 
RFID-tagged person can be located by readers embedded in 
the environment, using the received signal strength (RSS) of 
their tag’s transmissions. The RSS varies by the distance be-
tween tag and reader, as per the principle of lateration-by-
attenuation (LAT) [12]. However, location sensing is compli-
cated by the fact that RSS is affected by many factors other 
than distance (such as tag orientation, intervening objects or 
people, interference from other electronic devices, atmos-
pheric conditions) in ways that are difficult to quantify. 

Nevertheless, real time location systems (RTLSs), a common 
RFID application in hospitals, employ this approach to locate 
tagged people or equipment in wards, floors or entire build-
ings, generally to within a few metres. Research suggests that 
more precise location is possible over smaller areas [13, 14]. 

To support activity recognition, the TADAA system is in-
tended to detect an anaesthetist’s orientation and stance in 
addition to their location. An anaesthetist located next to a 
patient may be performing a number of activities, but the list 
of possibilities can be greatly reduced if it is known, for exam-
ple, that they are facing the anaesthetic machine, or that they 
are seated rather than standing. The TADAA system therefore 
has an anaesthetist wear two tags, one front and one back. 

Several tags are also placed at ‘landmark’ locations within the 
anaesthetic triangle, such as the drug trolley, anaesthetic ma-
chine, and the patient.  

Finally, a few tags are suspended from the ceiling to act as 
‘canaries in the coalmine’. Since these tags do not move, 
change orientation, or get obstructed, their RSSs should re-
main relatively stable. Any changes would indicate a general 
environmental effect that may also affect other tags. 

RFID Equipment 

The TADAA system uses Wavetrend active RFID equipment, 
operating in the 433MHz radio spectrum. Tags transmit every 
1.5 seconds. The readers can process only one tag transmis-
sion at a time. So if multiple tags transmit at the same instant, 
then all but one transmission will be lost. The reader ID, tag 
ID, date, time, and RSS are captured for each transmission. 
(RSS is expressed in an arbitrary unit that doesn’t appear to 
correspond to any standard unit of power or signal strength.) 

Accurate LAT requires a fine-grained and relatively stable 
RSS, and a predictable RSS-distance relation [13]. Effective 
activity recognition requires that the time between tag reads 
should be less than the shortest activity duration of the activi-
ties being performed [13,14]. 

Tests were performed in the AURA Lab to determine how well 
the RFID equipment satisfied these requirements: 

• Time between reads, for 20 tags with 1 reader. 

• RSS-distance relation, over distances from 0.5m to 
6m. This was done once with the tag stationary at 
each 0.5m interval, and then with the tag moving. 

No specific tests were performed for RSS granularity and sta-
bility, as the existing tests provide the necessary data. 

Tests were also performed to gauge the impact on a tag’s RSS 
when an anaesthetist: 

• Wears the tag. 

• Changes tag-reader orientation, by changing stance. 

• Obstructs the tag, by standing between it and the 
reader. 

LOS Sensing 

The TADAA system was deployed in a high-fidelity OR simu-
lator. Data was first collected from two dry runs during which 
one of the authors simply adopted 17 typical LOSs, without 
performing any activity. 

The main data collection was from 40 simulated procedures, 
performed over 20 days by 20 different anaesthetists. Along 
with the RFID data, the procedures were also videotaped and 
recorded by a human observer. Each anaesthetist was asked to 
rate the distraction caused by the RFID tags, the RFID readers, 
and the observer on a visual analog scale (VAS). 

The videos served as the ground truth, with an LOS deter-
mined manually for each second of video. The RFID data was 
aggregated to produce one record per second, combining the 

B. Houliston et al. / TADAA: Towards Automated Detection of Anaesthetic Activity852



RSSs for all tags and readers. Missing RSS values (due to the 
1.5s transmission rate and lost transmissions) was filled in with 
the average RSS for the relevant tag, reader and known RSS 
values. 

The RFID data was then clustered using the Self Organizing 
Maps (SOM) functions in MATLAB’s neural network tool-
box. Analysis was first performed on the dry run data. SOMs 
were trained with the data from dry run 1 and tested on the 
data from dry run 2, using different combinations of SOM size 
and tag subsets. 

SOMs were evaluated using precision, or positive predictive 
value. Each cluster was assigned to the LOS which contributed 
the largest number of records. Those records were considered 
true positives (TP). Any other records in the cluster (from oth-
er LOSs) were considered false positives (FP). The SOM’s 
precision was calculated as total TP / (total TP + total FP). 

Results from analysis of the dry runs informed further analysis 
of data from the simulated procedures. 

Results 

RFID Equipment 

The average time between reads was approximately 2.5s, with 
a standard deviation of 1.7s. 

The minimum RSS value recorded during testing was 89 and 
the maximum 212. RSS granularity, up to distances of 6m, was 
therefore 123 points. The standard deviation in RSS was ap-
proximately 0.8% of the average RSS value. 

RSS did vary by distance for all tags, but not in a predictable 
way. The RSS-distance relations shown in Figure 1 are typical: 
an overall downward trend, but with peaks and troughs. Dif-
ferent tag-reader combinations exhibited different RSS-
distance relations. As Figure 1 illustrates the RSS at a given 
distance varied by up to 40 points depending on whether the 
tag was moving away from or towards the reader. 

Table 2 shows the maximum effect on RSS of common inter-
actions between anaesthetists and tags. 
 

 
Figure 1 - Example RSS-Distance Relations 

Table 2 – RSS effect of anaesthetist-tag interactions 

Condition Maximum Change in RSS 
Change tag orientation +30 points 
Wear tag -20 points 
Obstruct tag -10 points 
Wear + obstruct tag -35 points 

LOS Sensing 

Table 3 shows the maximum precision achieved by training 
SOMs on the data from dry run 1. When the most precise 
SOM was tested on the data from dry run 2, it gave only 39% 
precision. Similar results were found with SOMs trained on 
dry run 2 data and tested on dry run 1 data. 

Given the results of dry run testing, a few changes were made 
for the analysis of simulated procedure data : 

• Tag subsets were removed as a variable since there 
was minimal difference between the various combina-
tions at the larger SOM size. All tags were included. 

• RFID data cleaning method was added as a variable. 
Given the variation in RSS values across the two dry 
runs, we expected there might be differences in SOM 
precision depending on whether missing RSS values 
were filled in with averages based on other data for 
the procedure (as had been done for the dry runs), 
other data for all procedures on the same day, or oth-
er data for all procedures. For the sake of complete-
ness we also tried no data cleaning. 

• Larger SOM sizes were tried, since video analysis 
identified 150-200 LOSs per procedure, rather than 
the 17 used in the dry runs. 

Table 4 shows the maximum precision achieved by training 
SOMs on the data from one procedure. When the most precise 
SOM was tested on data from another procedure on the same 
day, precision decreased to 54%. When the SOM was tested 
on data from procedures on different days, precision fell with-
in the 40%-50% range. Similar results were found when re-
peating the SOM analysis starting with different procedures. 

The anaesthetists’ VASs for distraction were converted to val-
ues in the range 0 (No distraction) to 100 (Worst distraction). 
Table 5 shows a summary of results. 

Table 3 - Maximum SOM precision for dry run 1 data 

Tags SOM Size 5 SOM Size 10 
Anaes. 84.1% 95.2% 
Landmark 98.3% 99.7% 
Ceiling 80% 98.9% 
An. + Lnd. 98.9% 99.7% 
An. + Clg. 80% 99.8% 
Lnd. + Clg. 80% 99.9% 
All 80% 99.8% 

 

B. Houliston et al. / TADAA: Towards Automated Detection of Anaesthetic Activity 853



Table 4 - Maximum SOM precision for procedure 39 data 

Cleaning SOM Size 10 SOM Size 20 SOM Size 30 
None 17% 40% 77% 
Proc. 58% 92% 96% 
Day 56% 84% 92% 
All 39% 61% 78% 
 

Table 5 - Distraction Ratings (n=20) 

Distraction Min Max Average 
Tags 0.25 25.5 5.55 
Readers 0.75 10.75 3.94 
Observer 1.00 70.00 3.94 

Discussion 

Based on the laboratory test results, the Wavetrend RFID 
equipment seems suitable for LOS sensing in most respects. 
The average time between tag reads of 2.5s is significantly 
better than the 7.5s - 30s reported in [13,14]. Likewise, tag 
granularity of 123 points is significantly better than the 8 
points reported in [13]. The RSS standard deviation is small in 
relation to the average, indicating that RSS is very stable. 

The major challenge presented by the RFID equipment is the 
RSS-distance relations. While we didn’t expect the tags to 
exhibit ideal inverse square relations [12], we were surprised 
at so much variation between different tag-reader combina-
tions. This would seem to preclude the use of LANDMARC-
style RSS comparisons across tags [14]. But it doesn’t disqual-
ify the equipment from use for LOS sensing; the inherent tag-
reader differences can be regarded as simply another source of 
RSS variation, alongside movement, orientation, and so on. 

Our assumption that the RSSs of the ceiling tags would remain 
relatively stable was proven to be true only for the tags closest 
to each reader. They can continue to serve as ‘canaries’. For 
the ceiling tags directly over the anaesthetic triangle, RSS does 
appear to be affected by anaesthetists’ movement. We were 
surprised to see that, at larger SOM sizes, the landmark and 
ceiling tags both seemed to be more useful for LOS sensing 
than the anaesthetist tags (see Table 3). 

The very high precision scores of SOMs trained on the dry run 
data (see Table 3) was encouraging, albeit achieved in a very 
‘sensing-friendly’ environment with only one person and a 
small number of LOSs. We expected much lower precision in 
the more realistic simulated procedures, so 90+% scores were 
surprisingly high. Such scores clearly won’t be possible in a 
real-time system, since they rely on having all the data for the 
procedure / day. Having to fill in missing RSS values using 
data from previous days, or even earlier in the same day, can 
reduce precision significantly, although is still an improvement 
over no cleaning at all (see Table 4). 

Some decrease in precision when testing SOMs across proce-
dures / days was expected, but such large decreases were sur-
prising. Comparing the RFID data for matching tag-reader-
LOS combinations across the two dry runs revealed that the 

RSS values in dry run 2 were up to 30% higher. The ‘canary’ 
tags showed increases of up to 10%, suggesting that some gen-
eral environmental effect may have accounted for some of the 
difference. The remainder likely reflects changes in the loca-
tion and orientation of anaesthetic and landmark tags between 
procedures. For example, the operating table is frequently 
moved between procedures so that the floor underneath can be 
cleaned. If it’s not replaced in the same location and orienta-
tion, even a small change could result in large differences in 
RSS (see Figure 1 and Table 2). These differences could pos-
sibly be detected, and corrected for, with a calibration process 
before each procedure or at the start of each day. 

Unsurprisingly, the anaesthetists found the RFID tags and 
readers much less distracting than a human observer (see 
Table 5). The cost of the TADAA system’s hardware is ap-
proximately the same as a human observer’s tablet PC. The 
system’s ongoing cost, replacing active RFID tags every 5 
years, is significantly less than an observer’s remuneration. 

Future Work 

We continue to develop the TADAA system’s RFID data 
cleaning, and SOM analysis approaches, and to prepare Hid-
den Markov Machine (HMM) algorithms for activity recogni-
tion testing. 

In the medium term, we intend to complement RFID with ad-
ditional sensors. RFID is best suited to LOS-specific manual 
activities (see Table 1). Detecting LOS-independent activities 
would be better done by other sensors. Communications, for 
example, might use a microphone suspended above the anaes-
thetic triangle. We are also considering means of recognising 
not just when a drug is administered, but which drug and how 
much. Analysis of patient vital signs may assist this, as in [10]. 

We ultimately see the TADAA system as a tool for improving 
patient safety. “In anaesthesia every complication has the po-
tential to cause lasting harm to the patient. Therefore devia-
tions from the norm must be recognised and managed 
promptly and appropriately” [5]. Activity data collected over 
time could be mined to produce ‘norms’ for procedure types, 
patient conditions, and so on. These would be as detailed as 
the Hierarchical Task Analysis (HTA) in [15] but based on 
actual practice. Anaesthetic activity detection in real-time 
could then compare actual activity with the norm, recognise 
deviations and raise alarms. 

Conclusion 

Task analysis has the potential to “provide more rational basis 
for making improvements” in anaesthesia, and ultimately to 
improve patient safety. But to do so it must capture scientific 
data to satisfy the requirements of evidence-based medicine, 
and not be too intrusive or expensive to implement in practice. 
Current task analysis methods, based on theory or observation, 
are unlikely to meet these criteria. 

The TADAA system is intended to automate anaesthetic task 
analysis, through use of active RFID technology, and a combi-
nation of SOM and HMM machine learning informed by exist-
ing task analysis data. Testing in our lab and in high-fidelity 

B. Houliston et al. / TADAA: Towards Automated Detection of Anaesthetic Activity854



OR simulations suggest that the TADAA system is less intru-
sive and expensive than observers. However accurate location 
sensing, a first step towards activity detection, remains a chal-
lenge in the face of a complex interaction of factors affecting 
RFID’s radio signals. 

As development of TADAA continues we envisage adding 
new sensors, and means of storing, mining and visualising 
activity data. We see the system as potentially a valuable tool 
to improve patient safety in anaesthesia, and in other medical 
disciplines. 
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