
Deployment of a Highly Secure Clinical Data Repository in an Insecure International

Environment

Henry Feldman
a
, Shane Reti

b
, Eli Kaldany

a
, Charles Safran

a

a

 Division of Clinical Informatics,Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
bDepartment of General Practice and Primary Health Care, University of Auckland, New Zealand

Abstract

We have designed and deployed a novel approach to protecting

Personal Healthcare Information in environments where a data

center is remote and its physical security cannot be assured. Our

“KeyServer” methodology uses a server-client-server

architecture to dynamically serve keys from a distant server in a

separate secure data center in the US. The approach combines

pre-existing and novel techniques into a layered protective

barrier around compromise of patient data. We describe how

this technology provides scalable security that makes security

breaches highly unlikely. With some careful planning a Clinical

Data Repositories fed by Electronic Health Records can be

placed in relatively insecure settings, with a high-level of security

surrounding data theft, even in the event of hardware theft. Such

security architecture is ideal for not only developing nations, but

for the evolution of health information to cloud computing

platforms.

Keywords:

Security, Computer hackers, Computer data compromising,

Computerized medical record system,

Introduction

In many countries with mature healthcare IT infrastructure,

security of Personal Healthcare Information (PHI) is often

provided by a multilayered approach that includes robust

physically secure data centers, complex network security

protocols, and a legal framework with effective enforcement.

These approaches may or may not be suitable in developing

countries with low evolving IT infrastructure where the risks of

data theft by physical and electronic intrusion can be high. A

review of the literature

To address health data security issues in high-risk environments

with low level technological infrastructure,[1] we designed a

novel encryption and authentication pathway. We posit that our

approach to protecting PHI will be generally useful for cloud-

based computing solutions in healthcare.

Methods

Data security is an important component of any electronic health

record (EHR). We have designed and deployed an EHR in a

Middle Eastern country that posed numerous challenges

including remote data protection in a setting where we were

concerned about physical security of the data. Because of low

bandwidth between the Middle East and the US, deployment

from a US based Tier-3 data center was not an option and we

designed the system with the plan to place servers in a small

commercial ISP data center located in the Middle East.

Ultimately we were able to deploy in a secure government based

data center, but this was well after the design phase was

complete.

The core systems design consists of a MySQL 5.1 Community

Edition relational database management system (Sun

Microsystems) with a JAVA based application (Sun

Microsystems) running on Apache Tomcat 6 (Apache Software

Foundation) application server.

The original deployment strategy posed a number of problems,

foremost being loss of control over the server environment.

Furthermore, the database is designed for heavy secondary use of

data in public health monitoring and research, making openness

of the server based Clinical Data Repository (CDR) a high-risk

asset.[2] Given these risks, we designed a multitier security

strategy that utilizes a novel encryption and authentication

pathway to provide network security and physical theft risk

mitigation.

We started with the assumption that we could not assure physical

security, and that our database and server code could be

physically stolen given the lack of high end data facilities

available in the region.[1] We were also cognizant of the fact that

both the passwords and certain aspects of PHI, even with

encryption, are vulnerable to preimage attacks, also known as a

“dictionary attack”. Passwords are notoriously susceptible to

dictionary attacks,[3] and the nature of medical record numbers

(MRN) as sequential non-sparse integers make them trivially

susceptible to a preimage attack. Although we do have influence

over password entry by users, we do not have influence over

MEDINFO 2010
C. Safran et al. (Eds.)
IOS Press, 2010
© 2010 IMIA and SAHIA. All rights reserved.
doi:10.3233/978-1-60750-588-4-869

869

existing medical record numbering schemes, so a secondary

method of attack prevention is required.

Our initial approach was to encrypt the entire database except for

any field that could be used for identification of patients. This is

easily accomplished as MySQL natively supports symmetric

encryption via full Advanced Encryption Standard (AES-128)

support and asymmetric encryption via the Secure Hash

Algorithm (SHA1). The AES-128 algorithm is a substitution

permutation network encryption algorithm authorized by

National Institute of Standards and Technology (NIST) for

protection of information classified up to the “secret” level,[4]

making it appropriate for storage of PHI. The use of AES

encryption is highly secure, as no successful attack other than

brute force, has been demonstrated in the literature. However, as

in any password-based system, the system is vulnerable if you

can discover the key since the data would be freely readable.

JAVA, while a highly secure language, has a vulnerability of

being able to be easily human-readable reverse-compiled as it is

not fully compiled, but rather partially compiled into byte-code.

This means that storage of encryption keys in the code would be

easily retrievable by having possession of the server/drives or

compiled application. Having the keys in the source code also

does not allow for easy changing of the codes as compilation and

redeployment of the application is required.

We have created and deployed a novel “KeyServer”

methodology that uses a server-client-server architecture to

dynamically serve keys from a distant server in a separate secure

data center in the US. The concept is that every column of every

table in the remote MySQL database that needs to be encrypted,

is encrypted with a column key. This key is only held in memory

on the application server implementing the KeyServer client, and

written to disk only on our secure KeyServer.

Each key can either be human-readable or machine-created thus

protecting against dictionary attack by the use of random

alphanumeric strings. Various identification attributes of the

client network environment are also recorded on the KeyServer,

including IP address and a hardware key of a physically separate

device on the client network which is sent with every client

request. These identification attributes make it very difficult to

spoof the client’s identity.

On boot the KeyServer client sends a getInitKey request with the

identification information gathered from the client network via an

encrypted web services call to the US KeyServer, and if

authenticated the current keys are returned, and the application

will start as shown in Figure 1.

At intervals varying between minutes and hours, the column keys

on the KeyServer are changed; the KeyServer client checks its

keys via a CheckKey request with the KeyServer master keys.

The request sends the identification attributes described above, as

well as the client’s current keys. The KeyServer then checks the

identification attributes, confirms the requesting client’s

authenticity and returns a pair of keys, the client’s current key

and the KeyServer’s new key. For any given column, if the

KeyServer and client keys are the same then the current settings

are still valid and no change is made. If the client key is different

to the KeyServer key then the master keys have been changed

and the column is dynamically decrypted with the old key and

encrypted with the new key. Figure 2 demonstrates this.

Figure 1 - Initial getInitKey request

H. Feldman et al. / Deployment of a Highly Secure Clinical Data Repository in an Insecure International Environment870

Figure 2 - Subsequent CheckKey request

The KeyServer never updates its own tables until an

acknowledgement packet is returned from the client stating it has

completed the key change successfully, as a failure could render

the data unreadable. The transaction is carefully and securely

logged on the server for future auditing. A network failure resets

the timer, and the transaction will retry in the future.

A more detailed examination of the encryption process presents

further security issues. A problem with PHI encryption is that

predictable data, such as the non-sparse sequentially numbered

MRN fields or names, require protection against preimage

attacks. This is because if one encrypts a simple string using the

same algorithm and key pair it will always produce the same

hash every time. This is true regardless of the encryption method,

whether symmetric or asymmetric, as both methods will produce

the same output (a “collision” in encryption parlance) with the

same source/key information. This is a much greater problem

with asymmetric algorithms such as SHA1 where the key is

fixed. It is less of a problem with random text, however patient

identifiers, such as medical record numbers are simply sequential

numbers 0-n and last names are known, so the creation of a

preimage attack is trivial. For example, on a typical desktop

computer you can generate the 128-bit SHA1 hash value

dictionary for 10 million medical records numbers in less than 1

minute. Figure 3 demonstrates a MRN dictionary attack.

Figure 3 - Dictionary Attack on MRN's

H. Feldman et al. / Deployment of a Highly Secure Clinical Data Repository in an Insecure International Environment 871

Figure 4 - SHA1 with extra payload

Our solution to solving this problem is to add an obfuscating

payload to the medical record number. This payload key is also

supplied by the KeyServer and is added to every predictable field

on a per-column basis. For example, using “rabbit” as the

payload key, MRN “1234567” becomes “1234567rabbit”. For

record retrieval we can then use our own “dictionary” knowing

what the obfuscating package key was to match against. This is

shown in Figure 4. If we wish to change the package key, we

manually “decrypt” the column by performing our own mass

dictionary attack and parsing the data back to MRN’s and

encrypting with the new package added. For data such as patient

names, we can add this text to the start of every name, and

programmatically subtract it after decryption.

While most password systems require the user to comply with

various levels of onerous password change and complexity

requirements, this makes users do things like write their

password down next to their computers. Security breaches

against passwords without access to the password file, are

generally human-nature attacks such as finding the password

written down or guessing familiar terms, which is not protected

against by stringent password requirements. Even worse,

stringent password requirements are not foolproof in themselves,

and simply lower the penetration risk somewhat.[5]

However, we were additionally concerned about password file

theft, which means protection against a dictionary attack. Since

our passwords are stored as asymmetrical SHA1 hash values, we

chose a different method. A simpler task is to take password

security out of the hands of the human user, and make the file

inherently highly resistant to preimage attack. Again an

obfuscating payload makes a useful barrier to mass preimage

attack.

Rather than forcing the user to remember these obfuscating

elements, we can programmatically change their password on

entry/storage on database entry to include these elements, but

without access to the originating code, and knowledge of the

obfuscating payload, decryption is unlikely. For instance instead

of the password sent to the encryption algorithm being

“password” it is “passwordrabbit” where rabbit is a secret key

kept only within the system. The user is unaware of these

changes. One downside of this, is that this package cannot be

dynamically rewritten, as we have no ability to perform our own

dictionary attack, since the system does not retain the passwords

as entered by the user.

Discussion

We have successfully designed and deployed a highly secure

clinical data repository using our novel KeyServer technology.

The technology combines pre-existing and novel techniques into

a layered protective barrier around compromise of patient data.

We start with network security by use of encrypted connection

with RSA-certificate signed servers. We then further the

identification of clients via secure session management with IP

address verification and separate local hardware identification of

clients. Onto this we add loading of the client side keys into

memory means that if the server is stolen, on restart the local

keys are destroyed, along with column level encryption. Scalable

security timing of master key changing and authentication calls

using system generated encryption keys make preimage attacks

highly unlikely. Finally adding additional payloads to predictable

data such as passwords, names and patient identifiers, makes

these more resistant to preimage attacks.

There are some potential disadvantages with this configuration.

Firstly, unexpected server shutdown automatically voids all keys

H. Feldman et al. / Deployment of a Highly Secure Clinical Data Repository in an Insecure International Environment872

from memory. Depending on the reliability of server side support

services, this will either be likely or unlikely. In any event, the

keys can always be reloaded from the US KeyServer. Another

limitation is the absolute requirement for a reliable network

connection between the client and US KeyServer. Multi-column

encryption and decryption processes potentially could affect

overall performance, however our experience is that this is

negligible.

There has been published work done that has demonstrated a

cryogenic attack at retrieving keys from computer DRAM chips

is possible,[6] this is a level of attack, that we choose not to

protect against. This level of sophistication is outside of the level

of perceived threat that PHI is likely to be subjected to. If this

threat becomes more realistic, the referenced article suggests one

practical countermeasure to this technique which is writing the

keys to memory with large amounts of garbage data around them

greatly lengthening the time required for key reconstruction, but

even this is vulnerable.

With some careful planning an EHR/CDR can be placed in

relatively insecure settings, with a high-level of security

surrounding data theft, even in the event of hardware theft. This

is made possible through advanced security practices and

distributing the security apparatus across international boundaries

with the primary security codes being in a highly secure data

center, with no ability of the remote system to recreate its own

codes. Another key to this approach is a reliable method for

local client proof of identity even if stolen and booted outside of

its home environment; this is the key to prevention of stolen code

and database being usable on any computer not in its predefined

network environment even if network hardware and soft IP

addressing is spoofed. We believe these methods are generally

useful for cloud-based solutions in healthcare.

References

[1] Hamade, S. Information communication technology in Arab

countries: problems and solutions. in ITNG 09 Sixth

International Conference; Information Technology: New

generations 2009. 2009.

[2] Safran, C., Bloomrosen M, Hammond WE, Labkoff S,

Markel-Fox S, Tang P, Detmer D, Toward a national

framework for the secondary use of health data: an American

Medical Informatics Association white paper. J Am Med

Inform Assoc, 2007. 14: p. 1-9.

[3] Cazier, J., Medlin BD, How secure is your information

system ? An investigation into actual healthcare worker

password practices. Perspect health Inf Manag, 2006. 3: p. 8.

[4] National Institute of Standards: Federal Information

Processing Standards Publications (NIST), Announcing the

Advanced Encryption Standard (AES), N.I.O. Standards,

Editor. 2001.

[5] Proctor, R., Lien MC, Vu KPL, Schultz EE, Salvendy G,

Improving computer security for authentication of users:

influence of proactive password restrictions. Behav res

Methods Instrum Comput, 2002. 34(2): p. 163-9.

[6] Halderman, A., Schoen SD, Heninger N, Clarkson W, Paul

W, Calandrino JA, Feldman AJ, Appelbaum J, Felten EW.

Lest we remember: cold boot attacks on encryption keys. in

2008 USENIX Security Symposium. 2008.

Address for correspondence

Dr Henry Feldman
1330 Beacon Street, Brookline, MA 02446
Email: hfeldman@bidmc.harvard.edu

H. Feldman et al. / Deployment of a Highly Secure Clinical Data Repository in an Insecure International Environment 873

