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Abstract 

“Pharmacovigilance is the process and science of monitoring 
the safety of medicines, consisting in (i) collecting and manag-
ing data on the safety of medicines (ii) looking at the data to 
detect ‘signals’ (any new or changing safety issue)” [1]. 
Pharmacovigilance is mainly based on spontaneous reports: 
when suspecting an adverse drug reaction, health care practi-
tioners send a report to a spontaneous reporting system (SRS). 
This produces huge databases containing numerous reports 
and their manual exploration is both cost and time prohibi-
tive. Existing techniques that automatically extract relevant 
signals rely on statistics or Bayesian models but do not pro-
vide information to the experts about possible biases lying in 
the data, nor about the specificity of a signal to a particular 
patient profile. Our extraction method combines numerical 
methods from the state of the art with a qualitative approach 
that helps interpretation. We build a synthetic representation 
of the database that is used to (i) identify unexpected patterns 
and biases (ii) extract potentially relevant signals w.r.t. pa-
tient profiles (iii) provide traceability facilities between ex-
tracted signals and raw data.
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Introduction 

The huge and constant increasing size of spontaneous report-
ing systems (SRS) precludes case-by-case human analysis. 
Indeed, in 2008 more than 20,000 new cases were added to the 
French pharmacovigilance system; the WHO database con-
tains more than 3 millions of reports. This has lead to the de-
velopment of data mining algorithms (DMAs) that automati-
cally extract signals, i.e. potentially relevant adverse drug re-
actions for further investigations by experts in pharmacovigi-
lance [2]. 

Two main approaches to extract signals are known, both of 
them are based on statistical criteria: (i) the frequentist ap-
proach which establishes pertinence threshold with respect to 
disproportionality measures between occurrences of a drug 
and an adverse effect (AE), and (ii) the Bayesian approach 
based on probability distribution models. Most of the debate 
has focused on the advantages and drawbacks of these ap-
proaches and on the fine tuning of their respective measures 
and thresholds. 

DMAs only deal with co-occurrence of drugs and AE and pro-
duce quantitative indicators. For this reason, [3] throws them 
back into question arguing that a drug-AE pair is, in itself, 
rarely sufficient to assess whether a potential signal has been 
generated. Indeed, using DMAs, experts have to evaluate each 
extracted drug-AE pair and its statistical measures with no way 
to estimate to what extent these measures are reliable. They 
also ignore if there are some demographic population restric-
tions or the presence of concomitant medications.  

Moreover some biases in SRS databases degrade quality of the 
DMA results: the number of patients that take a particular drug 
without AE is not known (no control sample) and fields in the 
database are not always fully or properly filled. Experts ignore 
if some of the detected signals are due to biases since they 
have no way to evaluate the presence of specific biases or 
noise in the case database when they evaluate detected signals. 

We argue that DMAs should provide experts disproportional-
ity measures as well as qualitative information in order to ex-
plain or to trace the reasons why each signal has been gener-
ated. We claim that a symbolic classification method such as 
Formal Concept Analysis reaches this goal providing (i) a syn-
thetic view of the database (ii) a search space for candidate 
signals (iii) an environment to navigate among results (iv) and 
a potential noise detection method. 

Materials and Methods 

This section presents first Formal Concept Analysis which 
builds a partial ordered structure called lattice. Then, we high-
light some mathematical properties of the lattices used to 
achieve the (i) to (iv) previous goals. 
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Basis on concept lattices 

A formal context [4] is a triplet (G,M,I) where G is a set of 
objects, M, a set of attributes and I⊆G×M is a binary relation 
and for any g∈G and m∈M, (g,m)∈I if the object g has the 
attribute m. Two derivation operators, both denoted ´, link 
objects and attributes: 

 for O⊆G and A⊆M, O´={a∈A|∀o∈O,(o,a)∈I}, 
A´={o∈O|∀a∈A,(o,a)∈I}. The compound operators ´´ 
are closure operators over 2G and 2M. 

A concept c is a pair (O’’,O’) where O⊆G. O’’⊆G is 
called the extent of c and O’⊆M the intent of c. Both intent 
and extent are closed sets which intuitively means that the ex-
tent of c is the exact set of objects which share all attributes in 
the intent and no other attribute, and dually between the class 
of attributes versus objects. The set C of concepts is partially 
ordered: for any c1=(O1,A1) and c2=(O2,A2), c1≤c2 ⇔ 
O1⊆O2 ⇔ A1⊇A2. The structure L(C,≤) defines a lattice, 
called concept lattice. 

Applied to pharmacovigilance, objects are cases and attributes 
are drugs (d1…d5), AE (e1…e10), and demographic attribute 
such as gender (M,F) and age bracket (<18,…,>60) of the 
patient (see Table 1). In the resulting concept lattice, shown in 
Figure 1, concepts are represented by boxes in which the upper 
(resp. lower) part contains the extent (resp. intent). 

A reduced labeling scheme is used so that each object/attribute 
appears only once in the lattice. An attribute (resp. object) 
label appears in the highest (resp. lowest) concept that con-
tains it in its intent (resp. extent). A concept labeled with an 
attribute a is called the attribute-concept of a denoted µ(a) : 
for instance, c1=µ(e2)=µ(e8). Therefore, the intent of a 
concept is made of all attributes whose attribute-concepts can 
be reached from the concept on an upward-heading path while 
extent is recovered in a dual way. For example, considering 
the concept c8, its intent contains all the intent labels of its 
ancestors {e2,e8,F,e1}, and its extent all the extent labels 
of its successors {#3,#4}.  

The lattice as a synthetic view of the database 

The concept lattice gives insights into the case database. We 
illustrate this point by few examples: c8≤c1 since 
{#3,#4}⊆{#2,#3,#4} and {e2,e8,F,e1}⊇{e2,e8}. 
This means that among the cases containing adverse effects 
{e2,e8}, some of them (but not all) are women (F) who also 
suffer from e1. By definition, the intent of a formal concept is 
a closed itemset1 and the lattice contains all possible closed 
itemsets as intents. Thus {e2,e8,F,e1} (intent of c8) is a 
closed itemset but {e2,e8,F} is not closed as there is no 
concept with this exact intent. This means that there is no case 

                                                           
1 Here, the data mining term itemset denotes a set of attributes. 

Table 1 – Binary relation between objects in rows (cases) and attributes in columns (age bracket, gender, AE, drugs) 

demographic attributes adverse effects drugs  
<18 18-60 >60 M F e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 d1 d2 d3 d4 d5 

#1  ×   ×    ×  ×    ×  ×   × 

#2   × ×   ×  × × × × ×    × ×   

#3  ×   × × ×  ×    × ×     × × 

#4 ×    × × ×      ×    × ×   

#5  ×  ×  ×  ×   × ×  × × ×     
 

 

Figure 1 – Concept lattice representing the binary relation given in Table 1 
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in the database where a woman suffers from e2 and e8 without 
suffering from e1. The concept c9 with {e2,e8,d3,d2} as 
intent shows that every patient who took d3 also took d2 and 
suffers from e2 and e8, since c9=µ(d3). 

Thus, through the relations existing between labeled concepts, 
the lattice reveals correlations between attributes: for instance 
"d3 is always taken with d2", "d1 is only taken by men", "all 
and only elderly suffer from e5"...  

A search space for candidate signals and interactions 

The lattice is used to identify necessary conditions for both 
signals (1 drug, 1 AE) and interactions (2 drugs, 1 AE). A ne-
cessary condition for a signal to occur is when the intent of a 
concept contains a pattern (d,e), i.e. it contains exactly one 
drug and one AE. Such a concept is called a “signal-concept”. 
Note that the intent of a signal-concept may be {d,e} or 
{d,e,X} where X is a set of demographic attributes. We note 
signal-concepts cde or cdeX. Similarly, the intent of an “inter-
action-concept” contains the pattern (di,dj,e). Let us call 
cij (or cijX) an “interaction-concept” with the pattern 
(di,dj,e). If its related signal concepts ci with the pattern 
(di,e) and cj with the pattern (dj,e) exist in the lattice, 
by construction, then ci≤cij and cj≤cij. The absence of ci 
means that di and e never appears together without dj. Thus 
the lattice defines the search space for candidate signals and 
interactions. It also links interactions to their related signals. 

Statistical measures are then computed for each signal-concept 
cde or cdeX in order to evaluate its pertinence with respect to 
the British Medicines and Healthcares products Regulatory 
Agency (MHRA) interestingness criteria [2]. We adopted 
three criteria for raising hypotheses regarding signals: number 

of cases ≥ 3, χ2 ≥ 4, and PRR ≥ 2. If the three criteria are suc-
cessful, the signal-concept cde (resp. cdeX) generates a poten-
tial signal (d,e) (resp. (d,e,X)) 

For the first criterion, the number of cases is actually the ex-
tent's cardinal of the concept. The lattice contains all the in-
formation needed to compute the contingency table and there-
fore the two later measures [5]. 

Considering a signal-concept cde without demographic attrib-
ute, the PRR is computed as follows: 

PRR d,e( )=
P(e d)
P(e d)

=
P(de)P(d)
P(d)P(de)

=
de ⋅ d

d ⋅ de
      (1) 

where |a| denotes the number of cases that has attribute a. 

Considering a signal-concept cdeX with a set of demographic 
attributes X, the PRR is computed as follows: 

PRR d,e, X( )=
(de)X ⋅ dX

dX ⋅ (de)X

    (2) 

Formula (2) provides a PRR that takes demographic attributes 
into account by restricting the scope to the concerned popula-
tion. Hence, |(de)X| denotes the number of patients in the X 
subpopulation that took d and suffer from e. 

An interaction-concept with the pattern (di,dj,e) becomes 
a potential interaction if it satisfies the three following crite-
ria2: number of cases ≥ 3, PRR ≥2 and the interaction's PRR 

                                                           
2 The PRR value of an interaction (d1,d2,e) is computed as follows: 
PRR(d1,d2,e) = P(e|d1d2) / P(e| not(d1d2)) 

 
Figure 2 – graphical user interface showing the (amoxicillin, diarrhea, M) signal 
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has to be greater or equal to each PRR of the two related sig-
nals if the signal-concepts of these signals exist in the lattice. 
The later criterion means that an interaction must “override” 
its related signals. When it is the case, its related signals are 
removed from the set of potential signals. 

However, related signal-concepts may not exist in the lattice. 
We proved that it is not worth computing the PRR for non-
closed signals (di,e) since it is always less or equal to the 
PRR of the interaction (di,dj,e). 

Navigation through results 

The user interface makes the most of all the previous observa-
tions. Experts can see what kind of relation exists between 
drug(s) and AE, for instance “all patients that took drug di 
suffer from e”. They may access to a set of potential signals 
and interactions, along with their statistical measures. Each 
signal and interaction is linked with its concept in the lattice 
and a subpart of the lattice can be visualized to help experts in 
their interpretation task. 

Figure 2 shows the user interface illustrating a signal d,e,X 
where d=amoxicillin, e=diarrhea, X={male}. A 
subpart of the lattice is shown, which contains the concepts 
cdeX, µ(d), µ(e), and all concepts on the paths from cdeX to 
µ(d) and µ(e), here cde, cdX, and ceX. 

Concepts are labeled with their intents and the number of ob-
jects in extent. Through this graph, experts can observe the 
distribution of cases in the database: 24 patients suffer from 
diarrhea (µ(e)), 98 took amoxicillin (µ(d)), 10 
took amoxicillin and suffer from diarrhea (cde), and 
among them 5 are men (cdeX).  

Then, experts can compare PRR values for both signals cde 
(denoted “PRR on the whole population”) and cdeX (“PRR on 
the subpopulation”) and understand why, in this exemple, 
PRR(d,e,X)>PRR(d,e). It can be seen that 5 men took 
amoxicillin among the 8 men that suffer from diar-
rhea; i.e. almost all of them. Unlikely, only 10 people took 
amoxicillin among 24 people who suffer from diar-
rhea, i.e. less that half of them. Thus, the demographic attrib-
ute M makes the signal stronger according to PRR values. 

In addition, it is possible to compare the strengths on two sub-
populations. The same signal on the female population shows 
a lower PRR (13.38). Hence, we have |(diarrhea, 
F)|=16 and |(amoxicillin, diarrhea, F)|=5. So the 
weight of amoxicillin takers within women suffering from 
diarrhea is lower compared to men, and compared to the 
whole population. Thus, examining the lattice allows experts 
to understand why a signal is stronger on given population. 

A potential noise detection method 

Trimethoprim and sulfamethoxazole come together 
in marketed drugs, thus a unique concept 
µ(trimethoprim) = µ( sulfamethoxazole) should 
exist in the lattice. It is not the case in Figure 3 since only one 
case has been badly filled in the database. The stability ratio 
[6] of a concept can capture such a situation. It quantifies the 
ability of the concept to remain existent after deletion of ob-

jects in its extent. Here a low stability can be used to identify 
concepts in the lattice resulting from noise in the database.  

 

Figure 3 – an interaction example containing noise 

Results 

We applied our method on a subset of the French national SRS 
database. This subset contains 3249 cases, 976 drugs, 573 AE, 
and demographic attributes such as gender and age, divided in 
3 brackets (<18, 18-60, >60). The resulting lattice contains 
13178 concepts, among which 6788 contains at least 3 cases in 
the extent. The 2812 candidate signal-concepts led to 565 po-
tential signals and the 836 candidate interaction-concepts to 
102 potential interactions. Note that the exhaustive search per-
formed by existing method would generate more than 500,000 
candidate signals and more than 270,000,000 candidate inter-
actions. 

In the worst case, the lattice contains 2n concepts where n is 
the minimum of the number of objects and the number of at-
tributes. In practice and especially with SRS databases, the 
number of closed itemsets is much lower than 2n and even 
lower than the number of candidates for exhaustive search. 

Table 2 shows the distribution of the 565 signals by pattern. 
Interestingly, we observe that signals can be divided in four 
distinct categories, depending on the weight of the demo-
graphic attributes. Only 29% of the signals have the pattern 
(d,e), the rest of the signals have at least one (49%) or two 
demographic attributes (22%). The validation of such 
attributes a posteriori by manual review of all signals shows a 
good relevance. In the majority of cases, the demographics 
attributes associated to the couple drug/effect constitute a 
known risk factor or probable risk factor. For example, cases 
of Pulmonary Hypertension associated with the use of appetite 
suppressants amphetamine-like were observed in women, aged 
18 to 60. 

Secondary, all the signals were classified into 5 categories (see 
Table 3). Categories (1),(2) contain true positives, (3),(4) false 
positives and (5) unknown potential signals. Table 3 shows 
that our method generates few false positives that are dis-
cussed in the next section. 27 signals were classified as un-
known, i.e. not reported in the literature, but interesting 
enough for investigation by experts.  
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Table 2 - distribution of the 565 potential signals by pattern 

signal pattern count (%) example 

drug, effect 160 (29%) cefazolin, thrombocyto-
penia 

drug, effect, 
gender 132 (23%) furosemide, gynecomastia, 

male 

drug, effect, age 148 (26%) abciximab, thrombocyto-
penia,      > 60 

drug, effect, 
gender, age 125 (22%) levofloxacin, mental con-

fusion, female, > 60 

Table 3- Classification of the 565 potential signals 

category signals 
(1) known (in reference documents) 502 (89%) 

(2) known (in a similar form) 24 (4%) 

(3) the AE is the origin of the medication 3 (1%) 

(4) due to concomitant drug 9 (2%) 

(5) unknown potential signal 27 (5%) 

Discussion and perspectives 

In this section we discuss the efficiency of our qualitative ap-
proach, especially for handling demographic attributes. Then, 
we present future directions about preventing false positives. 

 

Figure 4 – a signal containing a masculine AE 

The lattice helps experts in interpreting PRR variations de-
pending on demographic attributes as shown before for 
(amoxicillin, diarrhea). Moreover, in some situa-
tions where an AE is specific to a population, e.g. gyneco-
mastia (see Figure 4), handling demographic attributes in 
the PRR computation is the only way to obtain a meaningful 
measure. 

False positives (contained in categories (3) and (4)) are com-
mon in signal detection. In the following, we give directions 
for preventing false positives from category (4). The signal 
(hydrochlorothiazide, cough) is detected because 

these drug and AE often appear together. However in these 
cases, cough is actually caused by ACE inhibitors taken con-
comitantly with hydrochlorothiazide. Since there are 
several ACE inhibitors di, each association 
(di,cough) appears less often than the association (hy-
drochlorothiazide, cough). Therefore, only this later 
signal is detected. A solution would be to introduce drug the-
rapeutic families, such as ACE, as attributes, with (o,ACE) 
∈ I for each case o containing an ACE inhibitor. Then signals 
of the form (ACE,cough) would be detected, where ACE is 
a drug family, even if each signal (d,e) where d is an ACE 
inhibitor is too weak to be detected. 
In this paper, we have presented a novel automated signal de-
tection method that focuses on the qualitative aspects of the 
extracted signals. The pivot structure is a concept lattice that 
allows experts to identify unexpected situations in the case 
database, and provides information to the experts about why 
each signal has been detected. Besides our symbolic approach, 
we have implemented disproportionality measures which are 
commonly accepted in pharmacovigilance. Our first results 
based on an extract of the French database are very encourag-
ing: our method has a very good relevance and the signal pat-
tern includes demographic attributes. Further research will 
focus on (i) improvements for preventing false positives (ii) 
the scalability of our approach and its efficiency on a bigger 
database. 
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