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Abstract  

Temporal information plays a crucial role in medicine, so that 

in Medical Informatics there is an increasing awareness that 

suitable database approaches are needed to store and support 

it. Specifically, a great amount of clinical data (e.g., therapeu-

tic data) are periodically repeated. Although an explicit 

treatment is possible in most cases, it causes severe storage 

and disk I/O problems. In this paper, we propose an innova-

tive approach to cope with periodic medical data in an im-

plicit way. We propose a new data model, representing peri-

odic data in a compact (implicit) way, which is a consistent 

extension of TSQL2 consensus approach. Then, we identify 

some important types of temporal queries, and present query 

answering algorithms to answer them. We also sketch a tem-

poral relational algebra for our approach. Finally, we show 

experimentally that our approach outperforms current explicit 

approaches. 
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Introduction   

Most clinical data (e.g., patients’ clinical records) are naturally 

temporal. In order to be meaningfully interpreted, patients’ 

symptoms, laboratory test results, and, in general, all clinical 

data, must be paired with the time in which they hold (called 

valid time henceforth). In many cases, medical data concerns 

events that have to be repeated at periodic time. Such events 

include, e.g., routine activities that nurses have to perform 

daily on hospitalized patients, as well as intrinsically repeated 

activities such chemotherapy cycles, or dialysis (which is usu-

ally an open-ended activity, since it has to be performed for all 

the life of certain diabetic patients). An explicit representation 

of all the repetitions to be performed might be important, e.g., 

for scheduling purposes and resource allocation. Nevertheless, 

it is very costly, both in terms of storage allocation, and of 

disk I/O when data have to be retrieved.  

Periodic data in databases 

Unfortunately, the research about temporal data has widely 

demonstrated that the simple addition of some timestamped 

attributes (e.g., the START and END times for the valid time 

of a tuple) is not enough, since many complex problems need 

to be tackled. For instance, Das and Musen have identified 

several types of mismatches between the temporal support of 

standard databases and the richness of clinical data [1]; analo-

gously, James and Goble [2] have pointed out the require-

ments that medical records impose on a temporal model. De-

signing, querying and modifying time-varying tables requires 

a different set of techniques. Such techniques have been stud-

ied in more than 20 years of research by the temporal database 

(TDB henceforth) community  (consider, e.g., the overview 

[3]). Although TDB is still an open area of research, many 

researcher have already consolidated a “basic core” of results, 

by defining the TSQL2 consensus approach [4].  

In the medical area, several temporal database approaches 

have been devised. For instance, Chronus [5] and Chronus II 

[6] have provided an implementation of a subset of TSQL2 

[4], with specific focus on valid time. On the other hand, al-

though actions repeated at periodic time are quite frequent in 

the medical context, no approach has been developed in order 

to cope with such data in an efficient way. For instance, since 

periodic actions are an intrinsic constituent of clinical guide-

lines, several approaches in the area have devised expressive 

languages to represent complex periodic patterns (such as, 

e.g., those in chemotherapy treatments). Among the others,  

Asbru’s [7] and GLARE’s [8] temporal languages have been 

devised to model complex cases of periodically repeated ac-

tions. However, while in Asbru’s and GLARE’s languages 

repetition patterns in the guidelines can be represented, to the 

best of our knowledge no medical database approach has been 

devised to store in a (relational) database the actual data mod-

elling the effective execution of repeated actions (e.g., dialy-

sis) on each specific patients on which it has to be physically 

executed. 

Explicit vs. implicit approaches 

The trivial way to store a repeated action in a database is to 

explicitly store all the repetitions of that action. E.g., consider 

the following therapy for multiple mieloma (such a therapy 

has been used as one of the example of application of 

GLARE’s temporal representation language [8]). 

 (Ex.1) The therapy for multiple mieloma is made by six cycles 

of 5-day treatment, each one followed by a delay of 23 days 
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(for a total time of 24 weeks). Within each cycle of 5 days, 2 

inner cycles can be distinguished: the melphalan treatment, to 

be provided twice a day, for each of the 5 days, and the pred-

nisone treatment, to be provided once a day, for each of the 5 

days. These two treatments must be performed in parallel. 

While GLARE’s representation language provides an high-

level language to represent such a periodic pattern, a separate 

problem is to provide a proper support to store the time of 

execution the actions on specific patients affected by multiple 

mieloma. An explicit storage of all the actions (and the time 

when they have to be executed), although possible, is quite 

storage expensive. For instance, in a standard relational data-

base approach it would consist, for each patient, of  at least 90 

tuples, modelling 60 melphalan applications, and 30 predni-

sone applications. While it is important that all such actions 

are recorded in some way (e.g., for scheduling purposes, and 

resource allocation), it is worth noticing that the main draw-

back of such an explicit approach  is not just the waste of 

memory, but the increase of time devoted to physical disk I/O 

whenever such data need to be accessed. Additionally, from 

the logical point of view, an explicit storage of all the actions 

is not even possible in the case of open-ended repetitions, in 

which the end of repetitions is unknown (consider, e.g., the 

dialysis example). For such reasons, in the area of temporal 

databases, some initial approach has been devised to provide 

an implicit representation of periodically repeated data (con-

sider, e.g., [9,10]). In such approaches, periodically repeated 

data are not explicitly elicited: on the other hand, the pattern 

of repetition is directly stored in the database, so that a com-

pact representation is achieved. 

However, to the best of our knowledge, no ”implicit” ap-

proach to periodic data in the literature has explicitly focused 

on issues related to the efficient representation and manage-

ment of periodical data. In this paper, we describe an approach 

overcoming such a limitation, with specific focus on medical 

data. 

Methods 

In this paper, we propose an ”implicit” approach to cope with 

periodical data, which is based on the ”consensus” definition 

of granularity taken from the TDB glossary [11], and on its 

extensions to cover periodical data [12]. The  generality of our 

approach is also granted by the fact that our representation 

model is a ”consistent extension” of TSQL2 [4], the most fa-

mous “consensus” approach to temporal relational databases. 

Our approach articulates as follows: 

(i)  We identify a (relational) data model to store periodic 

data in an implicit way; 

(ii)  we consider a ”prototypical” class of queries (i.e., tem-

poral range queries), and we address the problem of 

identifying a suitable query answering approach (with 

specific attention to the query answering algorithm); 

(iii) we extend the approach (at the algebraic level) to cope 

with other kinds of queries  

(iii) finally, we have developed an extensive experimentation 

of our model and methodology, showing that our ”im-

plicit” approach overcomes the performance of tradi-

tional ”explicit” approaches both in terms of space and 

disk I/O’s, and in terms of answer response time. 

Temporal data model 

In our approach, a periodic activities are implicitly represented 

through a new type of relation (that we term periodical rela-

tion), plus an additional relation, PERIODICITY, that we use 

to define periodicities.  

Definition 1 (periodical relation): Given any schema 

R=(A1,...,An) (where A1,...,An are standard non-temporal attrib-

utes), a periodical relation r is a relation defined over the 

schema RP = (A1,...,An | VTS, VTE, Per, Perid) where VTS, VTE,  

are timestamps representing the starting and the ending point 

of the interval of time containing all the repetitions (called 

“frame time” henceforth), Per is an interval, representing the 

duration of the repetition pattern, and Perid is an identifier, 

denoting a periodical pattern in the PERIODICITY relation. 

Definition 2 (PERIODICITY relation): The PERIODICITY  

relation is a relation over the schema (Perid Start, End), in 

which Perid is a periodicity identifier, and Start and End are 

temporal attributes (timestamps) denoting the starting and the 

ending points of the periods in the periodical pattern. 

Example (Ex.2): As a simple example, let us suppose that an 

activity A1 has to be executed on a patient P1 each Monday, 

Wednesday and Friday for 10 weeks, starting from day 100, 

which is a Monday (for the sake of simplicity, here we use 

natural numbers instead of dates, and we assume that the base 

temporal granularity of the database is ‘day’). Such an infor-

mation is implicitly represented in our approach as shown in 

Tables 1 and 2 in the following. 

 

Table 1- A periodical relation. 

ACTIONS 

Action Patient VTS VTE Per Perid 

A1 P1 100 169 7 Id1 

 

Table 2- PERIODICITY relation, concerning the periodicity 

in the example only. 

PERIODICITY 

Perid Start End 

Id1 100 100 

Id1 102 102 

Id1 104 104 

 

In the ACTIONS relation, VTS and VTE states that the frame 

time is 70 days, from day 100 to day 169.  The repetition pe-

riod is 7 days (attribute Per). Perid provides a link to the table 

PERIODICITY, in which the repetition pattern for the first 

week is stored. Notice that, although not explicitly stated, all 

the days in which action A1 has to be executed (on patient P1) 

can be inferred from the above implicit representation, look-

ing at the pattern in the relation PERIODICITY as a pattern to 

be repeated each 7 days (Per attribute of the relation 

ACTIVITY), stopping repetitions after day 169 (see the ex-

plicit representation in Table 3) <end example> 
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It is important to notice that the temporal attributes of our pe-

riodical relations, in conjunction with the PERIODICITY re-

lation, allows us to capture the implicit definitions of periodi-

cal granularities, as defined in the temporal database litera-

ture: 

Property 1 (expressiveness): Our extended data model can 

represent periodical granularities, as defined in [12]. 

Moreover, it is worth noticing that non-periodical temporal 

data could be easily represented as a degenerate case of the 

periodical one, using tuples in which VTS and VTE model the 

start and the end of the valid time, and the Per and Perid at-

tributes are set to NULL1. Therefore, our approach can be 

seen as an extension of the “consense” TSQL2 approach [4], 

to cope also with periodic data. 

Property 2 (consistent extension): Our data model is a ”con-

sistent extension” of TSQL2 data model. 

Query answering: range queries 

Here we take into account range queries since, according to 

the temporal database literature, they are particularly relevant. 

Specifically, the type of query we deal with is the following: 

given a set of periodical data (e.g., activities in the 

ACTIVITY table) and an interval denoting the span of time 

one is interested in the query (e.g., from day 120 to day 124), 

one wants to know which data holds during such a time pe-

riod. In particular, in the context of periodical data, we iden-

tify two different types or range queries, depending on 

whether: 

(i) one is interested in the non-temporal part of the tuples only 

(e.g., What activities have to be performed from 120 to 124?) 

(ii) one is interested in the tuples and in their explicit time 

(e.g., what activities have to be performed from 120 to 124? 

For each of them, list all the times when they have to be per-

formed, between 120 and 124). 

For the sake of brevity, however, we will focus only on the 

type (i) of queries in the rest of the paper. 

Given our (implicit) temporal data mode1, the process of an-

swering such basic types of queries is quite complex, since we 

only have an implicit representation of data. Given a periodi-

cal relation r (e.g., ACTIVITY) and a query interval IQ (e.g., 

[120,124]), in the following we sketch the algorithm we pro-

pose for efficiently answering queries of type (i): 

(1) For each tuple t∈r 

(2) Let Pt be the intersection between  IQ  and the frame time 

of t  

(3) IF the duration of Pt is greater or equal than the period of 

t (attribute Per of t) THEN return t 

(4) ELSE 

(4.1)  get in PERIODICITY the intervals constituting the 

repetition pattern of t 

                                                           
1 Although such a representation is theoretically possible, for the 

sake of efficiency we store non-periodic data into standard TSQL2-

like temporal relations, to avoid the use of unnecessary NULL val-

ues. 

(4.2)  Using the ‘module’ function, “project” IQ and the 

intervals retrieved at step (4.1) onto the same span of 

time, and check intersection 

(4.3)  IF there is intersection, then return t 

  

Notice that step (3) above is simply an optimization: in case 

the interval of interest (i.e., Pt ∩ IQ ) is longer than the period 

of t, than for sure some of the intervals in the repetition must 

intersect the interval Pt∩IQ, so that the tuple can be directly 

provided in output, avoiding other checks. In (4.2), the mod-

ule function is used to check intersection between the pattern 

and the interval of interest in an efficient way, avoiding an 

explicit generation of all the intervals of repetitions.  

Query answering: temporal algebra 

Besides temporal range queries, all kinds of relational queries 

must be possible on our new data model. Codd designated as 

complete any query language that is as expressive as his set of 

five relational algebraic operators: relational union (∪), rela-

tional difference (-), selection (σ), projection (π), and Carte-

sian product (×) [13]. We propose an extension of Codd’s 

algebraic operators to query our data model.  

Several temporal extensions have been provided to Codd’s 

operators in the temporal database literature [4,14]. In many 

cases, the extended temporal operators behave as standard 

non-temporal operators on the non-temporal attributes, and 

involve the application of set operators on the temporal parts. 

This approach ensures that the temporal algebrae are a consis-

tent extensions of Codd’s operators and are reducible to them 

when the temporal dimension is removed. For instance, in 

BCDM [4], which provides a uniform semantics underlying 

several temporal database approaches, including TSQL2, tem-

poral Cartesian product involves pairwise concatenation of the 

values for non-temporal attributes of tuples and pairwise in-

tersection of their temporal values. Analogously, in BCDM 

[4], relational union, projection and difference behave in a 

standard way on non-temporal attributes, and perform union 

(for relational union and projection) and difference on the 

temporal part of value-equivalent tuples. We ground our ap-

proach on such a “consensus” background, extending it to 

cope with periodic data. For the sake of brevity, we sketch 

only our definition of temporal Cartesian product. The other 

operators are defined in a similar way, according to the above-

mentioned discussion. In the definition below, we denote by 

t[X1, ...,Xk] the value of the attributes  X1, ...,Xk in the tuple t.  

Definition 3 (Temporal Cartesian product ×
T
 ): Given two 

periodic relations r and s defined over the schemas R1P 

=(A1,...,An | VTS,VTE,Per,Perid) and R2P = (B1,...,Bk | 

VTS,VTE,Per,Perid) respectively, the temporal Cartesian prod-

uct r ×T s is a periodic relation q defined over the schema R3P 

= (A1,...,An, B1,...,Bk | VTS,VTE,Per,Perid) containing, for each 

pair of tuples (tr∈r, ts∈r), a new tuple t’ which is the concate-

nation of the non-temporal attributes of tr and ts (i.e., such that 

t’[A1,...,An]=tr[A1,...,An], and t’[B1,...,Bk]=ts[B1,...,Bk]), whose 

frame time is the intersection of the frame times of tr and ts 

(i.e., t’[VTS]=max(tr[VTS], ts[VTS]) and  t’[VTE]=min(tr[VTE], 

ts[VTE]), with  t’[VTS]< t’[VTE]), whose periodicity t’[Per] is 
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the least common multiple of tr[Per] and ts[Per], and whose 

periodicity identifier t’[Perid] is a new system-generated iden-

tifier. The periodic pattern of t’[Perid] in the table 

PERIODICITY is defined as the intersection of the periodic 

patterns associated with the identifiers tr[Perid]  and ts[Perid], 

evaluated  over a period of time which starts at t’[VTS], and 

whose duration is t’[Per]. Of course, only tuples such that 

frame times and periodic patterns have a non-empty intersec-

tion are retained in q. 

The definition of temporal Cartesian product given above can 

be extended to temporal definitions of theta join, natural join, 

outer joins, and outer Cartesian products, in a way similar that 

done in [15].  It is worth stressing that the consistent extension 

property also holds for our extended algebra: 

Property 3 (consistent extension): Our temporal relational 

algebra is a “consistent extension” of the BCDM (and 

TSQL2) algebra [4]. 

Experimental results 

In order to show the practical relevance of our implicit ap-

proach to efficiently manage periodic data, we have performed 

an extensive experimental evaluation. In particular, we have 

compared the performance of our approach with respect to the 

one of the standard explicit one. We remark here that, with the 

term ”explicit” approach, we mean the approach in which pe-

riodic data are explicitly stored. For instance, the relation 

ACTIONS_Expl contains an explicit representation of the 

actions in example Ex.2. 

 

Table 3- Explicit representation of the periodic data in Ex.2. 

The relation contains 30 tuples 

  ACTIONS_Expl 

Action Patient VTS VTE 

A1 P1 100 100 

A1 P1 102 102 

A1 P1 104 104 

A1 P1 107 107 

.... .... .... .... 

A1 P1 167 167 

 

Our  results are computed on a four 450MHZ CPU - SUN 

UltraSparc II processor machine, running Oracle 10.2.0 

RDBMS, with a database block size of 8K and SGA size of 

100MB. At the times of testing the database server did not 

have any other significant load.  

The RI-Tree [16] has been used to index both time intervals 

both in the implicit and in the explicit approach, since this 

indexing methodology has been proved to have has the best 

performance regarding interval data. 

We compare our results considering  space usage, CPU usage, 

query response time, and physical I/O, which is usually con-

sidered to be the most important parameter while evaluating 

efficiency of accessing data [17]. 

In absence of real data, based on our experience, we have gen-

erated periodic data to simulate real medical scenarios. The 

following parameters have been considered (we used hour as 

the basic granularity):  

(1) Number of Patients: 16,824;  

(2) Average number of periodic activities per patient: 8.30;  

(3) Average number of periods in a periodical pattern: 4.86; 

(4) Average duration of period of periodical patterns: 87.56; 

(5) Average duration of the frame time: 1169;  

(6) Distribution of the duration of periodical pattern: we have 

provided different durations, with a prevalence of actions to 

be repeated daily (about 40%), and weekly (about 30%). 

In order to carry on the experiments, the same periodical ac-

tivities concerning hospital patients have been represented 

both in the implicit and explicit model. In the implicit model, 

the representation of data required 353,367 records in the 

ACTIONS table and about 2 million records in the 

PERIODICITY table. In order to represent the same activities 

in the explicit model, more than 194 million records are re-

quired in the ACTIONS_Expl table, so that, globally, the 

space requirement of the explicit approach is more than 100 

times greater (see Table 4). 

 

Table 4- Comparing implicit vs explicit approach: space re-

quirement 

Table name Number of 

records 

Table 

Size (M 

Bytes) 

Approach 

ACTIONS 353,367 16.25 implicit 

PERIODICITY 2,108,495 43.08 implicit 

ACTIONS_Expl 194,671,463 7,331.82 explicit 

 

Physical disk I/O’s, CPU time and response time for range 

queries of type (i) for different query duration and different 

answer sizes are show in Tables 5, 6, 7, and 8. Different range 

queries duration are considered to investigate effect of the 

optimization in step (3) of our query answering algorithm. 

Different answer size is considered to see the effect of cluster-

ing the data, aging of database buffers and effect of trade off  

between Physical disk I/O and CPU usage. 

 

Table 5- Evaluation of the implicit approach, for range  

queries lasting 1 hour 

Answer 

Size 

Disk I/O CPU Response 

Time 

2,068 6,049 477 5 

7,471 10,831 1,431 12 

17,738 12,364 3,186 32 

 

Table 6- Evaluation of the explicit approach, for range  

queries lasting 1 hour 

Answer 

Size 

Disk I/O CPU Response 

Time 

2,068 3,031 73 3 

7,471 12,872 315 30 

17,738 31,904 930 154 
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Table 7- Evaluation of the implicit approach, for range 

queries lasting 1 week 

Answer 

Size 

Disk I/O CPU Response 

Time 

2,887 1,838 200 3 

4,620 2,114 260 5 

29,455 9,490 1,375 26 

 

Table 8- Evaluation of the explicit approach, for range 

 queries lasting 1 week 

Answer 

Size 

Disk I/O CPU Response 

Time 

2,887 7,970 601 52 

4,620 12,913 1,232 116 

29,455 183,073 26,460 944 

 

As regards disk I/O (the most important parameter in the data-

base context [17]), our approach is increasingly advantageous 

with respect to the explicit one. This is particularly true when 

the query range is bigger. This is because our approach can 

exploit the optimization at step (3) of the query answering 

algorithm. Also, with increased answer size our implicit ap-

proach outperforms the explicit method in the number of 

physical disk I/O’s, which results in significant shorter query 

duration ( more than 36 times shorter query response time in 

case of 168 hour range query and answer size of 29,455 as it 

can be seen comparing the last raw of Tables 7 and 8). 

An extensive experimental evaluation of our algebraic opera-

tors is still ongoing. Preliminary results confirm the advan-

tages of our approach with respect to the explicit one, similar 

to the advantages above as regards temporal range queries.  

Discussion and conclusion 

Temporal data play a fundamental role in medicine. Specifi-

cally, periodic data are frequent and important, so that their 

efficient treatment is a core issue in the area. We propose a 

new methodology based on an implicit representation, and on 

efficient query answering algorithms. We have experimen-

tally shown that our approach outperforms the “traditional” 

explicit approach as regards disk I\O, CPU usage, and re-

sponse time. The advantages of our approach increase with 

the increase of the answer size, and of the temporal range of 

the queries. As regards future work, we want to integrate our 

approach in GLARE (GuideLine Acquisition, Representation 

and Execution), a manager of clinical guidelines which 

strictly interacts with different databases, and devotes specific 

attention to the treatment of temporal data [18]. 
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