
Towards an implicit treatment of periodically-repeated medical data

Bela Stantic
a
, Paolo Terenziani

b
, Abdul Sattar

a
, Alessio Bottrighi

b
, Guido Governatori

c

a Institute for Integrated and Intelligent Systems, Griffith Univ., Queensland, Australia
bDepartment of Computer Science, Univ. Piemonte Orientale “A. Avogadro”, Alessandria, Italy

c NICTA, Brisbane, Queensland, Australia

Abstract

Temporal information plays a crucial role in medicine, so that

in Medical Informatics there is an increasing awareness that

suitable database approaches are needed to store and support

it. Specifically, a great amount of clinical data (e.g., therapeu-

tic data) are periodically repeated. Although an explicit

treatment is possible in most cases, it causes severe storage

and disk I/O problems. In this paper, we propose an innova-

tive approach to cope with periodic medical data in an im-

plicit way. We propose a new data model, representing peri-

odic data in a compact (implicit) way, which is a consistent

extension of TSQL2 consensus approach. Then, we identify

some important types of temporal queries, and present query

answering algorithms to answer them. We also sketch a tem-

poral relational algebra for our approach. Finally, we show

experimentally that our approach outperforms current explicit

approaches.

Keywords:

Databases, Temporal information, Periodic data

Introduction

Most clinical data (e.g., patients’ clinical records) are naturally

temporal. In order to be meaningfully interpreted, patients’

symptoms, laboratory test results, and, in general, all clinical

data, must be paired with the time in which they hold (called

valid time henceforth). In many cases, medical data concerns

events that have to be repeated at periodic time. Such events

include, e.g., routine activities that nurses have to perform

daily on hospitalized patients, as well as intrinsically repeated

activities such chemotherapy cycles, or dialysis (which is usu-

ally an open-ended activity, since it has to be performed for all

the life of certain diabetic patients). An explicit representation

of all the repetitions to be performed might be important, e.g.,

for scheduling purposes and resource allocation. Nevertheless,

it is very costly, both in terms of storage allocation, and of

disk I/O when data have to be retrieved.

Periodic data in databases

Unfortunately, the research about temporal data has widely

demonstrated that the simple addition of some timestamped

attributes (e.g., the START and END times for the valid time

of a tuple) is not enough, since many complex problems need

to be tackled. For instance, Das and Musen have identified

several types of mismatches between the temporal support of

standard databases and the richness of clinical data [1]; analo-

gously, James and Goble [2] have pointed out the require-

ments that medical records impose on a temporal model. De-

signing, querying and modifying time-varying tables requires

a different set of techniques. Such techniques have been stud-

ied in more than 20 years of research by the temporal database

(TDB henceforth) community (consider, e.g., the overview

[3]). Although TDB is still an open area of research, many

researcher have already consolidated a “basic core” of results,

by defining the TSQL2 consensus approach [4].

In the medical area, several temporal database approaches

have been devised. For instance, Chronus [5] and Chronus II

[6] have provided an implementation of a subset of TSQL2

[4], with specific focus on valid time. On the other hand, al-

though actions repeated at periodic time are quite frequent in

the medical context, no approach has been developed in order

to cope with such data in an efficient way. For instance, since

periodic actions are an intrinsic constituent of clinical guide-

lines, several approaches in the area have devised expressive

languages to represent complex periodic patterns (such as,

e.g., those in chemotherapy treatments). Among the others,

Asbru’s [7] and GLARE’s [8] temporal languages have been

devised to model complex cases of periodically repeated ac-

tions. However, while in Asbru’s and GLARE’s languages

repetition patterns in the guidelines can be represented, to the

best of our knowledge no medical database approach has been

devised to store in a (relational) database the actual data mod-

elling the effective execution of repeated actions (e.g., dialy-

sis) on each specific patients on which it has to be physically

executed.

Explicit vs. implicit approaches

The trivial way to store a repeated action in a database is to

explicitly store all the repetitions of that action. E.g., consider

the following therapy for multiple mieloma (such a therapy

has been used as one of the example of application of

GLARE’s temporal representation language [8]).

 (Ex.1) The therapy for multiple mieloma is made by six cycles

of 5-day treatment, each one followed by a delay of 23 days

MEDINFO 2010
C. Safran et al. (Eds.)
IOS Press, 2010
© 2010 IMIA and SAHIA. All rights reserved.
doi:10.3233/978-1-60750-588-4-1131

1131

(for a total time of 24 weeks). Within each cycle of 5 days, 2

inner cycles can be distinguished: the melphalan treatment, to

be provided twice a day, for each of the 5 days, and the pred-

nisone treatment, to be provided once a day, for each of the 5

days. These two treatments must be performed in parallel.

While GLARE’s representation language provides an high-

level language to represent such a periodic pattern, a separate

problem is to provide a proper support to store the time of

execution the actions on specific patients affected by multiple

mieloma. An explicit storage of all the actions (and the time

when they have to be executed), although possible, is quite

storage expensive. For instance, in a standard relational data-

base approach it would consist, for each patient, of at least 90

tuples, modelling 60 melphalan applications, and 30 predni-

sone applications. While it is important that all such actions

are recorded in some way (e.g., for scheduling purposes, and

resource allocation), it is worth noticing that the main draw-

back of such an explicit approach is not just the waste of

memory, but the increase of time devoted to physical disk I/O

whenever such data need to be accessed. Additionally, from

the logical point of view, an explicit storage of all the actions

is not even possible in the case of open-ended repetitions, in

which the end of repetitions is unknown (consider, e.g., the

dialysis example). For such reasons, in the area of temporal

databases, some initial approach has been devised to provide

an implicit representation of periodically repeated data (con-

sider, e.g., [9,10]). In such approaches, periodically repeated

data are not explicitly elicited: on the other hand, the pattern

of repetition is directly stored in the database, so that a com-

pact representation is achieved.

However, to the best of our knowledge, no ”implicit” ap-

proach to periodic data in the literature has explicitly focused

on issues related to the efficient representation and manage-

ment of periodical data. In this paper, we describe an approach

overcoming such a limitation, with specific focus on medical

data.

Methods

In this paper, we propose an ”implicit” approach to cope with

periodical data, which is based on the ”consensus” definition

of granularity taken from the TDB glossary [11], and on its

extensions to cover periodical data [12]. The generality of our

approach is also granted by the fact that our representation

model is a ”consistent extension” of TSQL2 [4], the most fa-

mous “consensus” approach to temporal relational databases.

Our approach articulates as follows:

(i) We identify a (relational) data model to store periodic

data in an implicit way;

(ii) we consider a ”prototypical” class of queries (i.e., tem-

poral range queries), and we address the problem of

identifying a suitable query answering approach (with

specific attention to the query answering algorithm);

(iii) we extend the approach (at the algebraic level) to cope

with other kinds of queries

(iii) finally, we have developed an extensive experimentation

of our model and methodology, showing that our ”im-

plicit” approach overcomes the performance of tradi-

tional ”explicit” approaches both in terms of space and

disk I/O’s, and in terms of answer response time.

Temporal data model

In our approach, a periodic activities are implicitly represented

through a new type of relation (that we term periodical rela-

tion), plus an additional relation, PERIODICITY, that we use

to define periodicities.

Definition 1 (periodical relation): Given any schema

R=(A1,...,An) (where A1,...,An are standard non-temporal attrib-

utes), a periodical relation r is a relation defined over the

schema RP = (A1,...,An | VTS, VTE, Per, Perid) where VTS, VTE,

are timestamps representing the starting and the ending point

of the interval of time containing all the repetitions (called

“frame time” henceforth), Per is an interval, representing the

duration of the repetition pattern, and Perid is an identifier,

denoting a periodical pattern in the PERIODICITY relation.

Definition 2 (PERIODICITY relation): The PERIODICITY

relation is a relation over the schema (Perid Start, End), in

which Perid is a periodicity identifier, and Start and End are

temporal attributes (timestamps) denoting the starting and the

ending points of the periods in the periodical pattern.

Example (Ex.2): As a simple example, let us suppose that an

activity A1 has to be executed on a patient P1 each Monday,

Wednesday and Friday for 10 weeks, starting from day 100,

which is a Monday (for the sake of simplicity, here we use

natural numbers instead of dates, and we assume that the base

temporal granularity of the database is ‘day’). Such an infor-

mation is implicitly represented in our approach as shown in

Tables 1 and 2 in the following.

Table 1- A periodical relation.

ACTIONS

Action Patient VTS VTE Per Perid

A1 P1 100 169 7 Id1

Table 2- PERIODICITY relation, concerning the periodicity

in the example only.

PERIODICITY

Perid Start End

Id1 100 100

Id1 102 102

Id1 104 104

In the ACTIONS relation, VTS and VTE states that the frame

time is 70 days, from day 100 to day 169. The repetition pe-

riod is 7 days (attribute Per). Perid provides a link to the table

PERIODICITY, in which the repetition pattern for the first

week is stored. Notice that, although not explicitly stated, all

the days in which action A1 has to be executed (on patient P1)

can be inferred from the above implicit representation, look-

ing at the pattern in the relation PERIODICITY as a pattern to

be repeated each 7 days (Per attribute of the relation

ACTIVITY), stopping repetitions after day 169 (see the ex-

plicit representation in Table 3) <end example>

B. Stantic et al. / Towards an Implicit Treatment of Periodically-Repeated Medical Data1132

It is important to notice that the temporal attributes of our pe-

riodical relations, in conjunction with the PERIODICITY re-

lation, allows us to capture the implicit definitions of periodi-

cal granularities, as defined in the temporal database litera-

ture:

Property 1 (expressiveness): Our extended data model can

represent periodical granularities, as defined in [12].

Moreover, it is worth noticing that non-periodical temporal

data could be easily represented as a degenerate case of the

periodical one, using tuples in which VTS and VTE model the

start and the end of the valid time, and the Per and Perid at-

tributes are set to NULL1. Therefore, our approach can be

seen as an extension of the “consense” TSQL2 approach [4],

to cope also with periodic data.

Property 2 (consistent extension): Our data model is a ”con-

sistent extension” of TSQL2 data model.

Query answering: range queries

Here we take into account range queries since, according to

the temporal database literature, they are particularly relevant.

Specifically, the type of query we deal with is the following:

given a set of periodical data (e.g., activities in the

ACTIVITY table) and an interval denoting the span of time

one is interested in the query (e.g., from day 120 to day 124),

one wants to know which data holds during such a time pe-

riod. In particular, in the context of periodical data, we iden-

tify two different types or range queries, depending on

whether:

(i) one is interested in the non-temporal part of the tuples only

(e.g., What activities have to be performed from 120 to 124?)

(ii) one is interested in the tuples and in their explicit time

(e.g., what activities have to be performed from 120 to 124?

For each of them, list all the times when they have to be per-

formed, between 120 and 124).

For the sake of brevity, however, we will focus only on the

type (i) of queries in the rest of the paper.

Given our (implicit) temporal data mode1, the process of an-

swering such basic types of queries is quite complex, since we

only have an implicit representation of data. Given a periodi-

cal relation r (e.g., ACTIVITY) and a query interval IQ (e.g.,

[120,124]), in the following we sketch the algorithm we pro-

pose for efficiently answering queries of type (i):

(1) For each tuple t∈r

(2) Let Pt be the intersection between IQ and the frame time

of t

(3) IF the duration of Pt is greater or equal than the period of

t (attribute Per of t) THEN return t

(4) ELSE

(4.1) get in PERIODICITY the intervals constituting the

repetition pattern of t

1 Although such a representation is theoretically possible, for the

sake of efficiency we store non-periodic data into standard TSQL2-

like temporal relations, to avoid the use of unnecessary NULL val-

ues.

(4.2) Using the ‘module’ function, “project” IQ and the

intervals retrieved at step (4.1) onto the same span of

time, and check intersection

(4.3) IF there is intersection, then return t

Notice that step (3) above is simply an optimization: in case

the interval of interest (i.e., Pt ∩ IQ) is longer than the period

of t, than for sure some of the intervals in the repetition must

intersect the interval Pt∩IQ, so that the tuple can be directly

provided in output, avoiding other checks. In (4.2), the mod-

ule function is used to check intersection between the pattern

and the interval of interest in an efficient way, avoiding an

explicit generation of all the intervals of repetitions.

Query answering: temporal algebra

Besides temporal range queries, all kinds of relational queries

must be possible on our new data model. Codd designated as

complete any query language that is as expressive as his set of

five relational algebraic operators: relational union (∪), rela-

tional difference (-), selection (σ), projection (π), and Carte-

sian product (×) [13]. We propose an extension of Codd’s

algebraic operators to query our data model.

Several temporal extensions have been provided to Codd’s

operators in the temporal database literature [4,14]. In many

cases, the extended temporal operators behave as standard

non-temporal operators on the non-temporal attributes, and

involve the application of set operators on the temporal parts.

This approach ensures that the temporal algebrae are a consis-

tent extensions of Codd’s operators and are reducible to them

when the temporal dimension is removed. For instance, in

BCDM [4], which provides a uniform semantics underlying

several temporal database approaches, including TSQL2, tem-

poral Cartesian product involves pairwise concatenation of the

values for non-temporal attributes of tuples and pairwise in-

tersection of their temporal values. Analogously, in BCDM

[4], relational union, projection and difference behave in a

standard way on non-temporal attributes, and perform union

(for relational union and projection) and difference on the

temporal part of value-equivalent tuples. We ground our ap-

proach on such a “consensus” background, extending it to

cope with periodic data. For the sake of brevity, we sketch

only our definition of temporal Cartesian product. The other

operators are defined in a similar way, according to the above-

mentioned discussion. In the definition below, we denote by

t[X1, ...,Xk] the value of the attributes X1, ...,Xk in the tuple t.

Definition 3 (Temporal Cartesian product ×
T
): Given two

periodic relations r and s defined over the schemas R1P

=(A1,...,An | VTS,VTE,Per,Perid) and R2P = (B1,...,Bk |

VTS,VTE,Per,Perid) respectively, the temporal Cartesian prod-

uct r ×T s is a periodic relation q defined over the schema R3P

= (A1,...,An, B1,...,Bk | VTS,VTE,Per,Perid) containing, for each

pair of tuples (tr∈r, ts∈r), a new tuple t’ which is the concate-

nation of the non-temporal attributes of tr and ts (i.e., such that

t’[A1,...,An]=tr[A1,...,An], and t’[B1,...,Bk]=ts[B1,...,Bk]), whose

frame time is the intersection of the frame times of tr and ts

(i.e., t’[VTS]=max(tr[VTS], ts[VTS]) and t’[VTE]=min(tr[VTE],

ts[VTE]), with t’[VTS]< t’[VTE]), whose periodicity t’[Per] is

B. Stantic et al. / Towards an Implicit Treatment of Periodically-Repeated Medical Data 1133

the least common multiple of tr[Per] and ts[Per], and whose

periodicity identifier t’[Perid] is a new system-generated iden-

tifier. The periodic pattern of t’[Perid] in the table

PERIODICITY is defined as the intersection of the periodic

patterns associated with the identifiers tr[Perid] and ts[Perid],

evaluated over a period of time which starts at t’[VTS], and

whose duration is t’[Per]. Of course, only tuples such that

frame times and periodic patterns have a non-empty intersec-

tion are retained in q.

The definition of temporal Cartesian product given above can

be extended to temporal definitions of theta join, natural join,

outer joins, and outer Cartesian products, in a way similar that

done in [15]. It is worth stressing that the consistent extension

property also holds for our extended algebra:

Property 3 (consistent extension): Our temporal relational

algebra is a “consistent extension” of the BCDM (and

TSQL2) algebra [4].

Experimental results

In order to show the practical relevance of our implicit ap-

proach to efficiently manage periodic data, we have performed

an extensive experimental evaluation. In particular, we have

compared the performance of our approach with respect to the

one of the standard explicit one. We remark here that, with the

term ”explicit” approach, we mean the approach in which pe-

riodic data are explicitly stored. For instance, the relation

ACTIONS_Expl contains an explicit representation of the

actions in example Ex.2.

Table 3- Explicit representation of the periodic data in Ex.2.

The relation contains 30 tuples

 ACTIONS_Expl

Action Patient VTS VTE

A1 P1 100 100

A1 P1 102 102

A1 P1 104 104

A1 P1 107 107

....

A1 P1 167 167

Our results are computed on a four 450MHZ CPU - SUN

UltraSparc II processor machine, running Oracle 10.2.0

RDBMS, with a database block size of 8K and SGA size of

100MB. At the times of testing the database server did not

have any other significant load.

The RI-Tree [16] has been used to index both time intervals

both in the implicit and in the explicit approach, since this

indexing methodology has been proved to have has the best

performance regarding interval data.

We compare our results considering space usage, CPU usage,

query response time, and physical I/O, which is usually con-

sidered to be the most important parameter while evaluating

efficiency of accessing data [17].

In absence of real data, based on our experience, we have gen-

erated periodic data to simulate real medical scenarios. The

following parameters have been considered (we used hour as

the basic granularity):

(1) Number of Patients: 16,824;

(2) Average number of periodic activities per patient: 8.30;

(3) Average number of periods in a periodical pattern: 4.86;

(4) Average duration of period of periodical patterns: 87.56;

(5) Average duration of the frame time: 1169;

(6) Distribution of the duration of periodical pattern: we have

provided different durations, with a prevalence of actions to

be repeated daily (about 40%), and weekly (about 30%).

In order to carry on the experiments, the same periodical ac-

tivities concerning hospital patients have been represented

both in the implicit and explicit model. In the implicit model,

the representation of data required 353,367 records in the

ACTIONS table and about 2 million records in the

PERIODICITY table. In order to represent the same activities

in the explicit model, more than 194 million records are re-

quired in the ACTIONS_Expl table, so that, globally, the

space requirement of the explicit approach is more than 100

times greater (see Table 4).

Table 4- Comparing implicit vs explicit approach: space re-

quirement

Table name Number of

records

Table

Size (M

Bytes)

Approach

ACTIONS 353,367 16.25 implicit

PERIODICITY 2,108,495 43.08 implicit

ACTIONS_Expl 194,671,463 7,331.82 explicit

Physical disk I/O’s, CPU time and response time for range

queries of type (i) for different query duration and different

answer sizes are show in Tables 5, 6, 7, and 8. Different range

queries duration are considered to investigate effect of the

optimization in step (3) of our query answering algorithm.

Different answer size is considered to see the effect of cluster-

ing the data, aging of database buffers and effect of trade off

between Physical disk I/O and CPU usage.

Table 5- Evaluation of the implicit approach, for range

queries lasting 1 hour

Answer

Size

Disk I/O CPU Response

Time

2,068 6,049 477 5

7,471 10,831 1,431 12

17,738 12,364 3,186 32

Table 6- Evaluation of the explicit approach, for range

queries lasting 1 hour

Answer

Size

Disk I/O CPU Response

Time

2,068 3,031 73 3

7,471 12,872 315 30

17,738 31,904 930 154

B. Stantic et al. / Towards an Implicit Treatment of Periodically-Repeated Medical Data1134

Table 7- Evaluation of the implicit approach, for range

queries lasting 1 week

Answer

Size

Disk I/O CPU Response

Time

2,887 1,838 200 3

4,620 2,114 260 5

29,455 9,490 1,375 26

Table 8- Evaluation of the explicit approach, for range

 queries lasting 1 week

Answer

Size

Disk I/O CPU Response

Time

2,887 7,970 601 52

4,620 12,913 1,232 116

29,455 183,073 26,460 944

As regards disk I/O (the most important parameter in the data-

base context [17]), our approach is increasingly advantageous

with respect to the explicit one. This is particularly true when

the query range is bigger. This is because our approach can

exploit the optimization at step (3) of the query answering

algorithm. Also, with increased answer size our implicit ap-

proach outperforms the explicit method in the number of

physical disk I/O’s, which results in significant shorter query

duration (more than 36 times shorter query response time in

case of 168 hour range query and answer size of 29,455 as it

can be seen comparing the last raw of Tables 7 and 8).

An extensive experimental evaluation of our algebraic opera-

tors is still ongoing. Preliminary results confirm the advan-

tages of our approach with respect to the explicit one, similar

to the advantages above as regards temporal range queries.

Discussion and conclusion

Temporal data play a fundamental role in medicine. Specifi-

cally, periodic data are frequent and important, so that their

efficient treatment is a core issue in the area. We propose a

new methodology based on an implicit representation, and on

efficient query answering algorithms. We have experimen-

tally shown that our approach outperforms the “traditional”

explicit approach as regards disk I\O, CPU usage, and re-

sponse time. The advantages of our approach increase with

the increase of the answer size, and of the temporal range of

the queries. As regards future work, we want to integrate our

approach in GLARE (GuideLine Acquisition, Representation

and Execution), a manager of clinical guidelines which

strictly interacts with different databases, and devotes specific

attention to the treatment of temporal data [18].

References

[1] Das AK and Musen MA. A foundational model of time for

heterogeneous clinical databases, Proc. AMIA’97, 106-110.

[2] James R and Goble C. Survey and critique of time and

medical records, Proc. Medinfo’95 (1995), 271-275.

[3] Ozsoyoglu G and Snodgrass RT. Temporal and Real-Time

Databases: A Survey, IEEE Transactions on Knowledge and

Data Engineering 7(4) (1995), 513–532.

[4] Snodgrass RT (Editor): The TSQL2 Temporal Query Lan-

guage, Kluwer Academic Publishers (1995), 674+xxiv

pages.

[5] Das AK and Musen MA. A temporal query system for pro-

tocol-directed decision support, Methods Inf. Med. 33(4)

(1994) 358-70.

[6] O’ Connor MJ, Tu S, Musen MA: The Chronus II Temporal

Database Mediator, Proc. AMIA, (2002), 567-571.

[7] Duftschmid G, Miksch S, Gall W: Verification of temporal

scheduling constraints in clinical practice guidelines. Artif.

Intell in Med 25(2) (2002), 93-121.

[8] Anselma L, Terenziani P, Montani S, Bottrighi A. Towards

a Comprehensive Treatment of Repetitions, Periodicity and

Temporal Constraints in Clinical Guidelines. Artif Intell in

Med 38, Elsevier, 171-195, 2006

[9] Kabanza F, Stevenne JM, and Wolper P. Handling infinite

temporal data. J. of Comput Sys Sci, 51:3–17, 1995.

[10] Terenziani P. Symbolic user-defined periodicity in temporal

relational databases. IEEE TKDE, 15(2):489–509, 2003.

[11] Bettini C, Dyreson C, Evans W, Snodgrass R, and Wang X.

A glossary of time granularity concepts. In Temporal Data-

bases: Research and Practice, LNCS 1399, Springer-

Verlag, 406–413, 1998.

[12] Bettini C and De Sibi R. Symbolic representation of user-

defined time granularities. Annals of Mathematics and AI,

30(1-4):53–92, 2000.

[13] Codd EF, “Relational completeness of data base sublan-

guages, Courant Computer Science Symposia 6, Data Base

Systems, Prentice Hall, 1971.

[14] McKenzie E, Snodgrass RT: ”Evaluation of Relational Al-

gebras Incorporating the Time Dimension in Databases”,

ACM Computing Surveys 23(4), 501-543, (1991).

[15] D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D. Soo, Join

Operations in Temporal Databases, VLDBJ 14:2–29 (2005).

[16] Kriegel HP, Ptke M, and Seidl T. Managing intervals effi-

ciently in object-relational databases. Proceedings of the

26th VLDB Conf., 407–418, 2000.

[17] Hellerstein J, Koutsupias E, and Papadimitriou C. On the

Analysis of Indexing Schemes. 16th ACM SIGACT-

SIGMOD-SIGART Symposium on PoDS, 1997.

[18] Terenziani P, Montani S, Bottrighi A, Molino G, Torchio

M. Applying Artificial Intelligence to Clinical Guidelines:

the GLARE Approach, in Computer-based Medical Guide-

lines and Protocols: A Primer and Current Trends, in

Studies in Health Tech and Informatics 139, 273-282, 2008.

Address for correspondence

Prof. Paolo Terenziani, Dipartimento di Informatica, Universita’ del

Piemonte Orientale “Amedeo Avogadro”, Via Teresa Michel 11,

15121 Alessandria, Italy. Tel. +39 0131 360174, email:

terenz@di.unito.it – terenz@mfn.unipmn.it

B. Stantic et al. / Towards an Implicit Treatment of Periodically-Repeated Medical Data 1135

