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Abstract

The cerebral arteriovenous malformation (AVM) is an abnor-
mal connection between arteries and veins without capillaries
in between, leading to increased blood pressure which might
result in a rupture and acute bleeding. Exact knowledge about
the patient’s individual anatomy of the AVM is needed for
improved therapy planning. This paper describes a method for

automatic extraction of the AVM and automatic recognition of

its feeders and draining veins and en passage vessels based on
3D and 4D MRA image sequences. After registration of the
MRA datasets, the AVM is segmented using a support vector
machine based on blood velocity information, a vesselness
measure and the bolus arrival time. The extracted hemody-
namic information is then used to detect feeders and draining
veins of the AVM. The segmentation of the AVM was validated
based on manual segmentations for five patient datasets, whe-
reas a mean Dice value of 0.74 was achieved. The presented
hemodynamic characterization was able to detect feeders and
draining veins with an accuracy of 100%. In summary the

presented approach can improve presurgical planning of

AVM surgeries.
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Introduction

The cerebral arteriovenous malformation (AVM) is a disorder
of cerebral vessels, represented by locally missing capillaries
between the arterial and venous system [1]. The missing capil-
laries often lead to changes of the hemodynamic situation and
especially increased blood pressure in the draining veins caus-
ing dilation, which in approx. 50% of all cases leads to a rup-
ture and following acute bleeding [2].

The aim of AVM therapy is the disconnection of the AVM
from the cerebral blood circulation coincided with rupture
prevention. The therapy possibilities available include en-
dovascular embolisation, neurosurgical resection, radiosurgery
and a combination of these [2]. In any case the detection of the
feeding arteries is of major interest. For risk estimation of sur-
gical resections the Spetzler-Martin scale [3] is often used.

Here the morphological parameters size and location of the
AVM and its drainage patterns are used to classify the patient
risk for persistent neurological deficits from neurosurgery ac-
cording to five grades. Additionally the detection of en pas-
sage vessels, which are vascular structures close to the AVM
but not directly connected, are important for therapy planning
since impairment should be avoided during therapy.

In most cases high resolution CTA or MRA image sequences
are acquired to obtain morphological information about the
AVM whereas the digital subtraction angiography (DSA) re-
mains the gold standard for evaluation of hemodynamics. Un-
fortunately DSA is based on ionizing radiation. Furthermore
an overall complication rate of 3.89% has been reported by
Warnock et al. [4]. The fact that only 2D projections of the
vessel system are supplied is another drawback of this tech-
nique. Recent development of new MR image acquisition
techniques, especially parallel MR and echo sharing, enables
the time resolved MRA (4D) imaging of the blood flow with a
high temporal resolution close to the DSA but a rather low
spatial resolution. The acquisition of 4D imaging might con-
siderably reduce the risk for the patient but due to the high
number of acquired images and the complex AVM anatomy
the slice wise manual visual inspection for therapy planning is
very time consuming and might lead to suboptimal results. A
computer based preparation and visualization of image se-
quences can help the clinicians to obtain improved therapy
plans while at the same time reducing the temporal expenses.

Although the arteriovenous malformation is of high interest in
neurosurgery and neuroradiology research the number of pub-
lications dealing with the computer based analysis is low. For
visualization of the AVM Bullitt et al. [5] proposed a com-
bined visualization of surface models of healthy vessels and a
representation of the AVM using volume-rendering techniques
to enable the visualization of the complicated structure of the
AVM. Temporal (dynamic) information of the blood flow is
not included. For the estimation of the size and location of the
AVM an exact segmentation is needed. For this an approach
based on dynamic CT images using factor analysis was pro-
posed by Nyui et al. [6], as a drawback the results have not
been quantitative evaluated and also previous knowledge
about arterial, venous and noise signals are required.
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Materials and Methods

MRA measurements

For development and evaluation of the method proposed 18
datasets of patients with an AVM were available. The MRI
measurements were carried out on a 3T Trio scanner (Sie-
mens, Erlangen, Germany) using an 8-channel phased array-
head-coil.

New parallel MRA and echo sharing techniques enable the
acquisition of 4D TREAT image sequences (time resolved
echo-shared MR-angiography technique) after application of
contrast agent and is described in detail by Fink et al [7].
These spatio-temporal image datasets serve as the basis for the
analysis of the patient individual hemodynamics. The spatial
quality of 4D TREAT images with a time resolution of 0.5 s
and a voxel size of 1.875 x 1.875 x 5.0 mm is rather low (see
Figure 1 b-c).

For this reason the 3D TOF MRA (time-of-ight) image se-
quence with high spatial resolution (0.469 x 0.469 x 0.5 mn»)
was also acquired. Three-dimensional TOF MR angiography is
one of the most commonly used non invasive method for
evaluating the intracranial vasculature and offers a superior
blood-to-background contrast (see Figure la). Therefore a
detailed segmentation of the vessel system is possible.

Figure 1 — Slice from TOF image sequence (a), and two slices
from TREAT image sequence (b,c) at three different time-
points (1-3)

Feature Generation

For segmentation of the AVM nidus several features used for
the support vector machine (SVM) classification have to be
extracted, which are described in the following.

Computation of the Vesselness Image

Based on the high resolution 3D TOF MRA the multi-scale
vesselness filter as proposed by Sato et al. [8] is used to assign
every voxel a value based on a vesselness measure based on
eigenvalues of the Hessian matrix. This leads to an enhanced
display of the vascular structures. Since implicitly the gray
value variation of healthy vessels is used in this approach, of-
ten malformed vessels are not detected correctly (see Figure
2b).

Segmentation of the Vascular System

The cerebrovascular systems, which serve as the basis for the
automatic analysis of the AVM, were automatically segmented
for every dataset using an in-house developed fuzzy based
method [9]. In this approach vesselness and maximum parame-
ter images are computed first based on the TOF image. These
parameter images are then combined with the TOF sequence
using a fuzzy inference system. The resulting fuzzy image of-
fers an improved enhancement of small as well as malformed
vessels against the remaining brain tissues. Finally, the fuzzy-
connectedness approach is used to extract the vascular system
(see Figure 2c). Using the Marching Cubes algorithm a surface
model of the vascular system can be generated and visualized
3D (see Figure 2d).

Figure 2 — Slice from TOF image sequence (a), corresponding
vesselness image(b), extracted vessel segmentation (c), 3D
surface model of the vascular system (d)

Bolus Arrival Time Estimation

The 4D MRA image sequences serve as the basis for the
hemodynamic analysis. For every voxel a temporal signal
curve representing the concentration of contrast agent at each
acquired time point can be extracted from the 4D dataset.

Based on the signal curves several hemodynamic characteris-
tics can be extracted. Whereas the bolus arrival time (BAT) of
the concentration time curve is a parameter most important for
the assessment of cerebral malformations. For BAT estimation
the reference based linear curve fitting as proposed by Forkert
et al. [10] was used.

In this approach a patient individual hemodynamic reference
curve is extracted from the 4D MRA dataset by fitting and
averaging a defined number of signal curves with a standard
deviation higher than a given threshold o. The threshold en-
sures that only signal curves which exhibit a typical signal
process are used for reference curve generation. After compu-
tation of the reference curve its reference BAT (rBAT) is es-
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timated using the time-to-peak criterion. Then in a following
step the reference curve is linearly fitted to each signal curve
of the 4D dataset such that the sum of squared differences
(SSD) is minimized. Using the parameters obtained by the
linear curve fit the reference BAT can be transferred to a tar-
get BAT (tBAT) (see Figure 3a).
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Figure 3 — Example for BAT estimation using reference based
linear curve fitting: reference curve (green) signal curve (red)
and fitted reference curve (blue)

Registration of 3D and 4D MRA datasets

The combined analysis of information of hemodynamics based
on the voxel-wise analysis of the signal curves in the 4D
TREAT dataset and anatomical vessel structures in 3D TOF
dataset requires the registration of both datasets. For this pur-
pose the method as proposed by Saring et al. [11] was used. In
this approach a 3D maximum intensity projection over time
(MIPt) is computed based on the 4D TREAT dataset. This
projection leads to an advanced representation of the vessel
system (see Figure 4a) which is helpful to improve the regis-
tration result. In a following step the resolution of the 3D MIPt
is adapted to the 3D TOF MRA using a linear resampling.
Finally, the transformation field between TOF MRA and MIPt
is calculated using a B-spline based 3D-3D registration
method with mutual information as similarity measure. The
computed transformation field can then be used to transfer the
BAT and MIPt datasets into the coordinate system of the 3D
TOF image sequence. The transferred BAT values can then
also be mapped to the surface model and visulized color coded
(see Figure 4b) and dynamically over time using the method
described in [12].

Figure 4 — Slice from the MIPt dataset (a), color coded visu-
alization of the BAT values on the 3D surface model (b)

Support Vector Machine Based Segmentation of the AVM

Assumptions for the Method

The exact segmentation of the AVM is necessary to extract the
important parameters size and location of the AVM. Further-
more it is needed for the detection of feeding arteries and
draining veins. The method presented in this paper for the
segmentation of the AVM is based on three assumptions:

1. The AVM does not exhibit typical vessel morphology.
Therefore it can be assumed that the computed vessel-
ness parameter image should exhibit low values for
AVM structures while healthy vessels are represented
by high values.

2. The missing capillaries of the AVM result in a reduced
resistance in the vascular system leading to an in-
creased blood flow velocity and early relative bolus ar-
rival times. Since the intensities of Time-of-Flight im-
age sequences represent the blood flow velocities it is
assumed that the AVM is represented by high values in
the TOF image. Due to artefacts caused by the TOF
image acquisition turbulent or high flow might lead to
low output values. Since the MIPt does not suffer from
this problem it will be taken into account in the follow-
ing step too.

3. The AVM is represented by the biggest local cluster of
voxels fulfilling the previous assumptions.

These assumptions are used in the method described in the
following to extract the AVM from the image sequences avail-
able.

Voxel wise Classification using Support Vector Machine

The BAT datasets are not directly comparable due to different
injection and acquisition starting times. Therefore normaliza-
tion of the datasets is required. For this reason the BAT data-
set is masked with the vessel segmentation and the mean BAT
is computed. Then in a following step the BAT dataset is nor-
malized in terms of calculating relative differences to this
mean BAT.

In the last years support vector machines (SVM) increasingly
moved into the focus of supervised classification research. The
aim of SVMs is to find an optimal separating hyperplane be-
tween classes based on training cases which can be used for
classification. The optimal hyperplane is defined by the prop-
erty of leaving the maximum margin between the classes.
SVMs have been found to be a powerful recognition method.
More detailed descriptions of support vector machines are for
example given in [13]. In this study a linear kernel was used
for training.

A total of 13 MRA datasets of patients with an arteriovenous
malformation have been employed for the training of the SVM.
The AVM have been manually defined based on the vessel
segmentation by a neuroradiologist. The SVM was then trained
voxel-wise using the four features described above, whereas
only voxels, part of the vascular system, were considered for
this purpose.
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After training of the SVM the generated model can be used for
voxel-wise classification, whereas the problem of detecting the
AVM was formulated as a two-class problem. The output of
the classification is a value describing the distance to the opti-
mal hyperplane, whereas positive values represent voxels clas-
sified as belonging to the AVM. The SVM is then used to gen-
erate a distance map by classifying each voxel based on its
exiting features.

After the classification dataset has been generated thresholding
at distance zero is performed. Finally largest connected com-
ponent analysis is used to extract the final AVM volume (see
Figure 5).

Figure 5 — Example for an automatically extracted AVM

Hemodynamic Characterization

In order to automatically detect feeders and draining veins of
the AVM the mean bolus arrival time is computed based on
the AVM segmentation. Then for the analysis of the vessels
surrounding the AVM the segmentation is dilated. In a first
step a connected component analysis is performed, whereas
vessels not connected to the AVM are defined as en passage
vessels. Then, the AVM segmentation is subtracted from the
remaining components and a second connected component
analysis is performed. For every extracted component the
mean BAT is estimated. If the mean BAT is earlier than the
mean BAT of the AVM segmentation the component is de-
fined as a feeder else it is defined as a draining vein. After
automatic characterization the different vascular structures can
be visualized color coded (see Figure 6) based on the 3D sur-
face model of the vascular system.

Figure 6 — Example for hemodynamic characterization

Experiments

For evaluation of the method proposed the AVM was defined
for all 18 datasets by a neuroradiologist based on the vessel
segmentation. 13 datasets (AVM sizes: 0.7 ml — 39.5 ml,
© 14.1 ml) were used for the training of the support vector
machine (approx. 9 mill. samples). The remaining five datasets
(AVM sizes: 2 — 32 ml, © 13.4 ml) for quantitative evaluation
of the results yielded by the AVM segmentation method. For
quantitative evaluation of the segmentation results the Dice
coefficient D(A,M) was used:

D(4, M) = AN M) /(| 4] +|M])

whereas A denotes the automatic segmentation and M the ma-
nual segmentation. Dice coefficients close to 1.0 denote a
good consensus.

For evaluation of the automatic hemodynamic vessel charac-
terization feeder and draining veins were manually defined by
a neuroradiologist and compared to the results yielded by the
method proposed

Results

Table 1 shows the results from the quantitative evaluation of
the AVM segmentation method. A mean Dice coefficient of
0.74 and a projected volume match of 83.6% were achieved.
The average time needed for the automatic segmentation pro-
cedure took approximately 5 minutes whereas the manual
segmentation took between 5 — 35 minutes, depending on the
size and complexity of the AVM.

Table 1 - Quantitative results of the AVM segmentation

Dataset | AVM size Segmented AVM | D(A,M)
(in ml) size (in ml)
1 32.83 25.43 0.75
2 16.95 18.99 0.74
3 9.5 11.05 0.85
4 5.71 4.66 0.71
5 3.75 4.48 0.65
0] 13.39 13.75 0.74

The evaluation of the automatic vessel characterization re-
vealed that feeding arteries and draining veins were detected
with an accuracy of 100% for the five datasets analyzed.

Discussion and Conclusion

In this paper an automatic method for the segmentation of the
AVM was presented. First quantitative results show that the
AVM can be sufficiently extracted from the image data avail-
able. Ignoring dataset #3 the results suggest that bigger AVMs
are easier to detect than the smaller ones. In order to achieve
more significant quantitative results leave-one-out test have to
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be performed. More manual segmentations from more observ-
ers are necessary in order to be able to make a statement about
the inter-observer variability. Additionally it has to be evalu-
ated how the results differ when using other kernels for the
SVM, such as polynomial or radial basis function kernels.

The automatic detection and 3D visualization of the feeding
arteries, draining veins and en passage vessels was rated to be
very helpful for diagnosis therapy planning and can improve
the therapy planning in future. Performing the mentioned leav-
ing-one-out tests will lead to more significant results of the
vessel characterization. Furthermore it has to be emphasized
that the results of the hemodynamic classification rely to a
great extent on the extracted vessel segmentation.

The dynamic 3D visualization of the cerebral blood flow can
help the clinicians to explore the patient individual blood flow
situation (see Figure 7).

A future combination with a functional atlas of the brain might
enable an image guided therapy of AVM patients.

d

Figure 7 — Selected frames from the dynamic 3D visualization
of the cerebral blood flow
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