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Abstract  

Despite their promising application, current Computer-Aided 
Detection (CAD) systems face difficulties, especially in the 
detection of malignant masses−a major mammographic sign 
for breast cancer. One of the main problems is the large num-
ber of false positives prompted, which is a critical issue in 
screening programs where the number of normal cases is con-
siderably large. A crucial determinant for this problem is the 
dependence of the CAD output on the single pixel-based loca-
tions initially detected. To refine the initial detection step, in 
this paper, we propose a novel approach by considering the 
context information between the neighbouring pixel features 
and classes for every initially detected suspicious location. 
Our modelling scheme is based on the Conditional Random 
Field technique and the mammographic features extracted by 
image processing techniques. In experimental study, we dem-
onstrated the practical application of the approach and we 
compared its performance to that of a previously developed 
CAD system. The results demonstrated the superiority of the 
context modelling in terms of significantly improved accuracy 
without increase in computation efforts. 
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Introduction   

Breast cancer is a disease that no woman wants to be diag-
nosed with, but if it does occur, finding it as early as possible 
can save woman's life. Worldwide there have been developed 
screening programs where mammographic exams are per-
formed in asymptomatic women. The enormous workload and 
the very low incidence rates of breast cancer (3-10 per 1000) 
in these programs, however, create various challenges for ra-
diologists in the interpretation of mammograms.  

The current advances in computer technology and screening 
digitalisation led to the rapid development of Computer-Aided 
Detection (CAD) systems. In screening programs these sys-
tems might be especially useful as a second reader for improv-
ing the mammographic analysis [1]. Essentially, the working 
principle of current CAD systems comprises a multi-stage 

process based on identification of regions of interest using 
image processing and pattern recognition techniques, extrac-
tion of a feature vector for each of these regions and classifica-
tion of the regions as cancerous (abnormal) based on super-
vised learning techniques such as neural networks.  

Computerized programs are currently employed for the detec-
tion and classification of masses and microcalcifications−the 
two major mammographic signs of breast cancer. Applications 
have shown that CAD tends to perform better in identifying 
malignant microcalcifications compared with masses [2]. 
Masses are more difficult to detect due to the great variability 
in their physical features and similarity to the breast tissue, 
especially at early stages of development. Hence, the prompt 
of the current CAD comprises not only the cancer but also a 
large number of false positive (FP) locations−undesired result 
in screening where the reading time is crucial. 

In this paper, we focus on improving mass detection on mam-
mograms by reducing the number of FPs while keeping the 
true detection rates high at the very first step of 
CAD−detection of suspicious pixel-based locations. In our 
previous work this selection is mostly based on the informa-
tion provided by a single pixel [3], [4]. This contradicts, how-
ever, the basic decision-making principle of radiologists, ac-
counting for context information in the region of interest. To 
incorporate this knowledge into a CAD system, we propose a 
novel approach for mass detection by explicitly modelling the 
dependencies of the neighbouring pixel features and classes. 
We use Conditional Random Fields (CRF), introduced in [5], 
as a powerful probabilistic tool to represent context dependen-
cies using undirected graphs. CRFs model the class distribu-
tion given a set of observed features, which makes them espe-
cially suitable for sequential labelling and classification tasks 
such as mass detection. The main advantage of CRFs over 
generative models such as Markov Random Fields (MRF) is 
their conditional nature, relaxing the need for making a lot of 
independence assumptions among the observed features, re-
quired by MRFs to allow tractable inference.  

A number of previous works considered context information 
for breast cancer detection. In [6] the authors propose an ap-
proach using MRF to segment breast masses achieving 90% 
sensitivity at 2 FP detections per image. In [7], a random field 
model is used to detect microcalcifications on mammograms. 
Alternative directed-graph approach based on Bayesian net-
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works has been proposed in [8] to predict the type of breast 
cancer represented by microcalcifications, reaching prediction 
performance of a human expert. 

In contrast to the previous studies where only the dependen-
cies between the neighbouring labels are considered, in this 
work we also account for the dependencies between the ob-
served features in the neighbourhood employing the CRF rep-
resentation. In such a way we can better represent the mass 
characteristics and tackle the problem of noise in the labelling. 
Next we present our mammographic CRF model. 

Materials and Methods  

Mammographic Discriminative Model 

In screening mammography, it is known that cancer develops 
mostly in one of the breasts and at one location. In the initial 
stage of development, malignant masses are often small and 
may have subtle characteristics, which hardly distinguish them 
from the surrounding tissue. This implies that scanning the 
whole breast for a mass would be a cumbersome task in terms 
of time and computation efforts. Therefore we propose to con-
sider not the whole image but only those parts of it, which in-
dicate certain cancer characteristics. Hence our method con-
sists of two main steps: (1) Detection of suspicious pixel-based 
locations (PxL) and (2) Building a CRF model for each of the 
detected PxLs. 

Initial pixel-based mass detection 

In this step we use the pixel-based mass detection scheme from 
the CAD system presented in [3]. For all pixels in the seg-
mented breast area, this algorithm calculates at each location i 
a set of 5 local mass features: 3 for stellate (star-like) lesions 
and 2 for focal masses. A 3-layer neural network classifier, 
supervised by the pixel labels ∈ {–1, 1}, combines these fea-
tures into the so-called mass likelihood li − the likelihood that 
a mass is present at location i. The method is applied at a high 
sensitivity level to ensure that most masses are found. This 
implies that a large number of FPs would also be observed 
because the detection was based on 5 features only.  

CRF modelling of the initially detected local masses 

To further filter out the FP locations, for every selected pixel q 
we build a CRF model, which is defined with respect to a sys-
tem of neighbourhood around q. The CRF modelling we pro-
pose in this paper is based on the approach in [9], which we 
extend to account for the specifics of the mammographic mass 
detection. 

For every image we define a set Q = {q | q ∈ B, lq >θ}, where 
B is the set of all pixels in the breast area and θ is a threshold 
value. We then use every q ∈ Q as a central point to construct 
a region (grid) Rq with a size of M×N pixels. Since the pixel 
information is very sensitive to small variations, we create 
non-overlapping groups of m×n pixels and we call these pixel 
groups sites. For every site s we compute the feature vector ys 
as the mean of the feature values of the pixels in the site. We 
compute the site label xs by assigning –1 (cancer) if sufficient 

cancer information is available in the site (e.g., 40% or more 
of the pixels are cancerous) and 1 otherwise. 

Based on this construction we define a CRF over the labelling 
x given the observations y as an undirected graph with a set S 
of vertices corresponding to the random variables xs, which 
satisfy the Markov property with respect to the graph stating 
that p(xs | y, xS\{s}) = p(xs | y, xΝs) where S\{s} is the set of ver-
tices excluding {s} and Νs is the set of neighbours of s. In 
other words, the random variable xs is conditionally independ-
ent of all other variables given the observations and its 
neighbours. We represent the neighbourhood (direct depend-
encies) of s in the graph by the set of edges between s and the 
4 nearest neighbour sites. Then the conditional distribution of 
the labelling x given the observations y is factorised into a 
product of two potential functions, capturing the compatibility 
of a certain variable configuration: one local potential associ-
ating given site with a certain class ignoring the site 
neighbours and one interaction potential for the site depend-
encies. After log-transformation, the conditional distribution is 
defined as: 
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where Z is a normalizing constant ensuring that p is a valid 
probability distribution, φ is the local potential and ψ is the 
interaction potential.   

To account for the feature dependencies between the sites, for 
each site s we consider 2 scales at which ys is computed–the 
original m×n scale and 2m×2n scale. This results in the dou-
bled feature vector Ys. Next we define ts = h(Ys), where h is a 
second-degree polynomial expansion, to explicitly model fea-
ture interdependencies. Given the computed features, the po-
tentials are then defined by  

( ) ( )sssss xx twy exp, =ϕ              (2) 

( ) ( ),,, sqsqqsqs xxxx tνβy Φ=ψ              (3) 

where Φ is the probit function, tsq is the edge feature vector 
created by concatenation of ts and tq, and the parameters ws 
and vsq are weight vectors. Note that we modify the standard 
definition of the edge potential as done in [9], by adding a 
parameter set β in order to account for different weights with 
respect to the label interaction. This set contains four values 
corresponding to the four label combinations. Since we aim at 
mass detection, the pairwise cliques for which xs = xq = –1 are 
expected to get larger potentials, facilitated by the larger value 
of β-1,-1. Schematic presentation of the CRF modelling for 
mass detection is presented in Figure 1. 

Parameter learning and inference 

The parameters that need to be optimised in the learning proc-
ess are Ω = {w, v, β}. Since in the construction of CRFs the 
observed features are dependent, the corresponding parameters 
need to be learned simultaneously. This implies that the 
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evaluation of Z in Equation (1), which sums over all assign-
ments, becomes intractable for exact inference. Various ap-
proximate techniques have been used to overcome this prob-
lem: mean-field, loopy belief propagation, stochastic gradient. 
Here we consider the stochastic gradient descent technique, 
which has shown fast converging properties. The true gradient 
is approximated by computing the gradient at an individual 
training sample. After each step, the new parameter set is ad-
justed using the approximated gradient based on the update 
rule of the form Ωd = Ωd-1 - η∇Ωi, with d ranging over the 
number of training samples, ∇ being the gradient and η being 
the learning rate. As prior parameters we assumed that the 
values of w and v are drawn from the normal distribution with 
zero mean and variance σ2. 

The goal of inference in our modelling scheme is to find for a 
new test region the most likely output label sequence x* over 
the region sites given the observed site features. We use as 
inference method belief propagation. To compute the single 
label probability of the whole region we take the mean over 
the label sequence on 16×16 window around the centre q. 
Only the pixels in the close proximity of q are considered as 
they are most likely to contribute to the correct classification. 

Experiments and Results 

Design 

The proposed approach was evaluated using data collected in 
the Dutch breast cancer screening program. The dataset con-
sists of mammograms for 164 cases from which 118 were with 
biopsy-proven cancer and 46 were normal. The total number 
of images was 220 from which 93 were normal. For every im-
age, which has been digitized at 200 micron (0.2 mm) spatial 
resolution, the breast area was segmented by the CAD system 
and a likelihood image was created. The pixel-based locations 
with a mass likelihood ≥ 0.5 were selected as most suspicious. 
This resulted in 494 pixel mass locations from which 361 
(73%) were normal. Each of these locations was then used as 
centre to construct a region of size 128×128 pixels 
(~2.5×2.5cm) for CRF mass detection modelling. Every region 
was partitioned into 32×32 non-overlapping sites and site fea-
tures were computed as described above. 

Given the classification problem at hand, we trained the CRFs 
using a random subset of 88 locations with cancer only. Our 
choice was motivated by the fact that the regions built on nor-
mal locations do not provide information about the difference 
in the labels and features of the sites. The remaining cancerous 
and all normal regions were used as a test set, accounting for 
61% normal test cases. We note that no FPs from cancerous 
cases were used in training and testing, since in the evaluation 
procedure at a case level they are not included. The results 
presented next are based on the test data. 

We compare the results of the CRF modelling scheme (CAD-
CRF) with those obtained from CAD on the likelihood image 
(CAD-Lik) at two levels: region and case. We evaluated the 
performance at a region level by the Free-response Receiver 
Operating Characteristic (FROC) curve whereas at a case level 
we used the Receiver Operating Characteristic (ROC) [10]. 
The Area Under the Curve (AUC) is used as a standard 
evaluation technique. The CRF modelling was done using the 
freely available CRF toolbox for Matlab [9], where we applied 
necessary changes to implement the proposed model. 

Results 

Accuracy 

Region level. Figure 2 shows test sample regions and the re-
sults on their detection obtained by CAD-CRF. In the test 
samples the black areas represent cancer whereas the white 
regions are FP regions detected by CAD-Lik. Clearly a large 
number of FPs are filtered-out by CAD-CRF, as indicated by 
the grey regions in the test results on Figure 2. Figure 3 pre-
sents the results from both CAD-CRF and CAD-Lik at a re-
gion level. We observe improvement in the mass detection rate 
for the proposed method, starting already at a FP rate of 0.023 
per image. At a FP rate of 0.1 per image, for example, CAD-
CRF detects 84.6% of the masses whereas for CAD-Lik the 
detection rate is 71.8%. Furthermore, the context modelling 
allowed the detection of all masses at a FP rate of 0.3 per im-
age, whereas for the original likelihood image this was 
achieved at a FP rate of 0.58. The areas under the FROC 
curves for the FP range [0.01,1] are: AUC(CAD-CRF) = 0.782 
and AUC(CAD-Lik) = 0.705, indicating considerable im-
provement in the detection of the cancer at a local level.  

Figure 1- CRF modelling for automatic mass detection 
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Figure 2- Test regions and corresponding results obtained 
from CAD-CRF. The black areas represent cancer, the white 

regions are FPs and the grey regions are true negatives 

 

Figure 3- FROC curve for the performance of CAD-CRF and 
CAD-Lik at a region level 

Case level. The probability for a case being cancerous is com-
puted by taking the maximum probability for the regions in the 
case. Figure 4 presents the ROC curves with the respective 
AUCs for CAD-CRF and CAD-Lik at a case level. We per-
formed a one-side statistical test for the difference between the 
AUCs using ROCKIT [11]. The obtained p-value is 0.6%, 
with 95% confidence interval of (0.01, 0.09) indicating the 
significant improvement in the cancer detection rate achieved 
by CAD-CRF. Figure 5 also demonstrates the improved per-
formance of CAD-CRF based on filtering out the FP regions 
detected by CAD-Lik on two normal cases. 

Next we examine the effect of the parameters β in Equation (3) 
on the performance of CAD-CRF. After training the model we 
obtained a vector β with values β1,1 = 25.03, β1,-1 = 0.5, β-1,1 = 
0.5 and β-1,-1 = 50.06. These results confirm our expectation 
that the better classification of cancerous regions is facilitated 
by the large weight for cancerous neighbour pixels. Further 
evidence supporting this hypothesis is obtained by comparing 
the results obtained from CAD-CRF where all values of β are 
fixed to 1, as done in [9]. Then the case AUC drops to 0.786 
because 17 cancerous test cases are missed. 
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Figure 4- ROC curve for the performance of CAD-CRF and 

CAD-Lik at a case level 

Figure 5- Performance of CAD-CRF and CAD-Lik on two 
normal cases. The numbers represent the pixel-based likeli-
hoods computed by CAD-Lik for detected FP locations. For 

the same locations the likelihood computed by CAD-CRF is 0 

Computational issues 

The learning took 15 iterations in 4.8 minutes on a 2.33GHz 
Intel Core™2 Duo machine. The learning parameter η was set 
to 0.0009. The average time of processing a test region was 
0.22 ± 0.04 seconds. This implies that for an image with an 
average number of 3 detected mass locations the testing takes 
around a second. Thus the improvement in accuracy achieved 
by using CRF modelling comes at no computational costs and 
can easily be applied in the screening setting.  
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Discussion 

The motivation for the experimental study was to show that 
extending an existing CAD system by using context informa-
tion (1) provides significantly better prediction decisions at a 
region and case level (2) without increasing the computational 
time. On the one hand, modelling context information leads to 
significantly better distinction between masses and FPs in 
comparison to the original CAD system, leading to consider-
able reduction of FPs while maintaining the high sensitivity 
rate reached by the CAD system. This improvement is crucial 
for screening programs where the number of normal cases is 
much larger than the number of cancerous cases and the sensi-
tivity of human eye decreases with increasing the case dispro-
portion. We also note that the proposed system obtained 100% 
sensitivity at a FP rate of 0.3 per image, which falls in the ra-
diologists’ operating FP range and it is considerably better 
than the result obtained in [6], for example. Next the current 
CAD-CRF makes better decisions based on a set of only 5 
original pixel-based features. This might also explain the im-
perfect segmentation achieved by CAD-CRF as shown in Fig-
ure 2. However, region segmentation is performed in the sub-
sequent stage of the CAD system once the suspicious pixel-
based locations are detected. On the other hand, the extended 
system remains efficient since the added filtering step does not 
require additional computational time for providing the predic-
tion decision. This makes the proposed context-based ap-
proach also attractive to apply in a screening program where 
time is an important factor.  

Current problem in the original CAD system, which remains in 
its extended context version, is that a cancerous lesion can be 
detected by multiple regions. One solution is to perform the 
testing of the learned classifier for a new region on a larger 
area consisting of overlapping windows of fixed size. Addi-
tional advantage of this approach might be that cancers missed 
by the CAD-Lik system can eventually be detected.  

Conclusion 

We presented a novel approach for mass detection based on 
CRF modelling using local image-based context information.  
We tested the approach on screening data and compared the 
results with those obtained from the likelihood image built by 
a CAD system. The proposed method outperformed the 
benchmark by reducing significantly the number of FP regions 
and misclassified normal cases while maintaining high cancer 
detection rates. The additional filtering step added to the CAD 
system showed no increase in the computational effort. These 
results are encouraging for building reliable, fast and accurate 
CAD systems, which can be employed for assisting radiolo-
gists in mammographic screening programs. To make progress 
in this direction, future work aims to extend the proposed 
model by including temporal information on the mass devel-
opment and conducting large-scale experiments with digital 
screening data. 
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