
  

  

Abstract— We describe a Complementary Metal-Oxide 
Semiconductor (CMOS) Direct Time Interval Measurement 
(DTIM) Integrated Circuit (IC) to detect the decay (fall) time of 
the luminescence emission when analyte-sensitive luminophores 
are excited with an optical pulse. The CMOS DTIM IC includes 
14x14 phototransistor array, transimpedance amplifier, 
regulated gain amplifier, fall time detector, and time-to-digital 
convertor. We examined the DTIM system to measure the 
emission lifetime of oxygen-sensitive luminophores tris(4,7-
diphenyl-1,10- phenanthroline) ruthenium(II) ([Ru(dpp)3]2+) 
encapsulated in sol-gel derived xerogel thin-films. The DTIM 
system fabricated using TSMC 0.35µm process functions to 
detect lifetimes from 4µs to 14.4µs but can be tuned to detect 
longer lifetimes. The system provides 8-bit digital output 
proportional to lifetimes and consumes 4.5mW of power with 
3.3V DC supply. The CMOS system provides a useful platform 
for the development of reliable, robust, and miniaturized 
optical chemical sensors. 

I. INTRODUCTION 
uminescence lifetime based sensing is a good platform 
for the development of robust, field-usable and reliable 
sensors for biological, medical, and chemical sensing 

applications [1, 2]. Luminescence lifetime based sensors are 
insensitive to (a) light source (excitation) and detector drift, 
(b) changes in optical path, and (c) drift due to luminophore 
degradation and/or leaching [1, 3]. We employ a CMOS 
optoelectronic IC with monolithically integrated 
photodetection elements and signal processing circuitry to 
work towards low cost miniaturized sensors [4]. In a 
microsystem configuration, direct detection of luminescence 
lifetimes is challenging and less commonly pursued as it can 
necessitate elaborate signal detection and processing 
instrumentation when performed in the time-domain, 
because the lifetimes are relatively short and can range from 
several nanoseconds to milliseconds. To directly measure 
the luminescence lifetimes in time-domain, the sample is 
excited by a light pulse signal with a short pulse width and 
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the subsequent exponentially decaying behavior of the 
emission response is monitored.  

In the history of luminescence lifetime based sensors, 
Trettnak, et al. [5] first developed a miniaturized oxygen 
sensor instrumentation utilizing a phase modulation 
technique by assembling off-the-shelf integrated circuits into 
a compact instrument. Then, Kieslinger, et al. [6] 
demonstrated a compact sensor instrumentation for direct 
time-domain measurement of fluorescence lifetimes again 
based on assembling off-the-shelf integrated circuits 
controlled by a microcontroller. Many luminescence 
lifetime-based integrated sensors that utilize the phase 
modulation technique have also reached commercial 
applications such as measurement of oxygen in waste water 
monitoring and modified atmosphere food packaging by 
McDonagh, et al. and von Bultzingslowen, et al., repectively 
[7, 8] . More recently, NeoFox fiber-optic sensor system for 
biological and medical applications was introduced by 
Ocean Optics Inc. [9]. We were the first research group to 
pioneer the development of custom-designed CMOS ICs to 
perform phase luminometric signal detection and processing 
in both linear [4] and non-linear (enhanced sensitivity) [10] 
operations. To date, the resolution of CMOS phase 
luminometry systems achieved to detect lifetimes is 
relatively low [4] and special non-linear signal processing 
techniques are required to improve the phase detection 
resolution [10] to obtain a large voltage/current output per 
unit change in analyte concentrations.   

Here, we propose a mixed-signal CMOS system for direct 
luminescence lifetime measurements using Direct Time 
Interval Measurement (DTIM) method which uses the 
strategy of using voltage comparators that trigger when the 
exponentially decaying luminescence response (under 
excitation by a light pulse) crosses specific voltage levels. 
The DTIM IC then uses a Time-to-Digital Convertor (TDC) 
circuit to measure the time internal between the triggering of 
subsequent voltage comparators to provide the time domain 
characteristics of the luminescence response.  In principle, 
this strategy could be used to measure luminescence 
lifetimes that are on the order of few hundred nanoseconds. 
The limiting factor to detecting even shorter lifetimes is the 
use of large sized photodetectors to detect the weak 
luminescence signals which introduces significant parasitic 
capacitances which in turn limits the operational bandwidth. 
The prototype system is suitable for use with luminophores 
with relatively long-lived excited-state lifetimes ranging 
from several microseconds or longer lifetimes [1] and 
provides an 8-bit digital output. The sensor system block 
diagram is shown in Figure 1.  
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We employ xerogels that are sol-gel 
materials and that have been exten
immobilization media for sequestering
recognition elements including fluorophore
modified nanoparticles [2, 11, 12]. Xerogel
glasses and their appeal for biorecognition 
from their production at room temperature, 
tunable pore dimensions, biocompatibilit
optical transparency window. The oxygen 
here is based on encapsulating the lumin
diphenyl-1,10-phenanthroline) ruthenium(I
which is well known to be responsive to ga
the xerogel matrices [3]. Assuming all 
molecules in the xerogel-thin-film are equa
the O2 molecules, Equation (1) (known 
equation) describes the relationship 
concentration and luminophore quenching 
and τ0 are the luminescence intensity or
absence of O2 respectively, I and τ are inten
the presence O2  respectively, Ksv is th
constant, kq is the bimolecular quenching c
is the gaseous O2 concentration [3]. 
 

0 0
2 01 [ ] 1 [sv q

I K O K O
I

τ τ
τ

= = + = +

II. CMOS DTIM IC 
In literature, we can find several re

optoelectronic ICs that can perform
fluorescence imaging and optical 
measurements for many applications 
analysis, quantum dot imaging, pH sensing
dyes imaging [13-18]. These systems
avalanche photodiodes as detectors whi
voltage biases and are unstable with amb
changes limiting their use in versatile situa
use phototransistors as detectors that
responsivity and can be operated with 

Fig.1. Block diagram of the CMOS Luminescence
System. 
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CMOS DTIM IC is designed an
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in Figure 2(a). The DTIM IC c
components which include (i) Phot
(ii) Transimpedance Amplifier (TIA
Amplifier (RGA) (iv) Fall Time D
Time-to-Digital Convertor (TDC). 
microphotograph of the CMOS IC
PTA) is covered by a metal layer 
interference of optical signals with c

In operation, a diode laser is used
repeating at a low frequency (few 
the luminophore molecules which
exponential decaying luminesc
luminescence signal is made to inc
generates a proportional photo-curr
consists of 196 identical phototr
parallel and arranged in 14 x 14
effective capacitance of the photo
bandwidth while providing a large
Each phototransistor is similar 
transistor and is formed by p-active
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electromagnetic spectrum [4]. The 
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level of the input signal. The output 
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activate an 8-bit counter. Later, the
SP will latch the current output of 
8-bit digital output represents 
(exponential decay of the luminesc
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in Figure 1), which is read out through a 
resolution of the TDC is decided by th
external clock signal, CLK. 

A. Transimpedance Amplifier (TIA) 
The front-end TIA is important in determ

system bandwidth. We examined the perf
TIA circuits. The first is a simple diode c
shown in Figure 3(a). The gain and band
diode connected load TIA can be expressed 
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where, gm is the small signal transcondu
connected transistor, n is subthreshold slo
VT is the thermal voltage, Idc is the DC phot
is the parasitic capacitance of phototransisto
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Fig. 3. Circuit schematic of the transimpedance ampli
diode connected TIA; (b) Reduced Gate Capacitan
mentioned W/L’s of the MOSFETs are in micrometer

Fig. 4. Simulated comparison between the gain and ba
simple diode connected load TIA and RGC-TIA used 
IC by varying with DC input photocurrent level. 
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The CPT in Equation (3) is repl

joint capacitance of gate-GND cap
GND capacitance of M3 and input c
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DTIM IC by varying with DC in
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B.  Regulated Gain Amplifier (RG
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the signal voltage level varies between Vmi
output of the comparator array is connected
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To fabricate the xerogel based oxyg

following reagents were used: tris(4,7
phenathroline) ruthenium(II) chloride ([Ru
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microscope glass cover slip at 400 rpm fo
film a thickness of few microns. 

A diode laser (λ=445nm) was used to e
sensor placed in a test chamber. The O2 con
test chamber is controlled by a custom b
consisting of a matched pair of air 
connected to O2 and N2 gas cylinders. G
detection range of the DTIM from 4µs to 
only able to measure the lifetimes between
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