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Abstract— In this paper, we developed a methodology for
estimating three parameters of tissue inclusion: size, depth,
and Young’s modulus from the tactile data obtained at the
tissue surface with the tactile sensation imaging system. The
estimation method consists of the forward algorithm using finite
element method, and inversion algorithm using artificial neural
network. The forward algorithm is designed to comprehensively
predict the tactile data based on the mechanical properties of
the tissue inclusion. This forward information is used to develop
an inversion algorithm that will be used to extract the size,
depth, and Young’s modulus of a tissue inclusion from the tactile
image. The proposed method is then validated with custom
made tissue phantoms with matching elasticities of typical
human breast tissues. The experimental results showed that
the proposed estimation method estimates the size, depth, and
Young’s modulus of tissue inclusions with root mean squared
errors of 1.25 mm, 2.09 mm, and 28.65 kPa, respectively.

I. INTRODUCTION

It is widely known that tumors and cancerous tissues are

stiffer than the surrounding normal tissues [1]. Thus, tissue

inclusion stiffness as well as its geometry measurement can

help early detection of malignant tumors such as breast

cancer. To help physicians to detect tumors more efficiently

various methods have been devised to measure the elasticity

of the tissues and embedded lumps [2], [3].

Elastography is a non-invasive method in which tissue

elasticity is used to detect and classify tumors [4]. If a

compression or vibration is applied to the tissue, the em-

bedded tumor deforms less than the surrounding tissue due

to its high stiffness characteristics. Under this observation,

elastography records the distribution of tissue elasticity using

sound waves. While elastography is successfully applied to

static organs such as liver, breast, and brain, the calculation of

tissue inclusion stiffness is challenging. Also the instrument

is relatively expensive and requires a dedicated operator [5],

[6].

The medical device named “SureTouch Visual Mapping

System” produced by Medical Tactile Inc. uses capacitive

pressure sensor array to measure the tissue elasticity [7]. The

device is capable of computing and visualizing the pressure

pattern of the tissue. However, the resolution of pressure
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sensor based method is not as good as optical based method.

Also this system requires other sensors to detect the applied

force. Another type of elasticity determination system using

tactile sensor is the “piezoelectric finger (PEF)” [8]. In this

work, the micromachined artificial finger, using piezoelectric

tactile sensing mechanism, is introduced. PEF has several

advantages including low cost, small form factor, and large

dynamic range. However, PEF is sensitive to temperature

variation, thus requiring somewhat extensive calibration.

Furthermore, limited spatial resolution and hysteresis are the

disadvantages of PEF system.

To estimate parameters of tissue inclusions through the

obtained tactile data, a novel estimation method is needed.

In [9], 2-dimensional (2-D) finite element method (FEM)

based forward algorithm and Gaussian fitting model-based

inversion algorithms are devised. This work was extended in

[10] to find a more complete set of tissue inclusions. They

showed that the estimation result is more accurate in deter-

mining the size of a tissue inclusion than manual palpation.

Nevertheless, the results are limited to tissue inclusion at

least 100 times stiffer than the surrounding tissues. The FEM

based forward algorithm and artificial neural network (ANN)

based inversion algorithm is also proposed in [11]. But in

their work, the FEM modeling was done in 2-D, however, the

tissue phantom is 3-dimensional (3-D). Thus 2-D model is

not an accurate representation of the phantom. Furthermore,

the small number of 2-D FEM data used to train the inversion

algorithm also makes the parameter estimation results less

accurate.

In this paper, a novel estimation method to quantify

various tissue inclusion parameters such as size, depth, and

Young’s modulus is presented. The estimation is performed

based on the tactile data obtained at the tissue surface

using the tactile sensation imaging system (TSIS) [12]. To

estimate tissue inclusion parameters, finite element method

and artificial neural network algorithms are utilized. FEM

is used to generate simulated tactile data over different

tissue inclusion parameters (size, depth, and elasticity) in the

idealized tissue model. ANN is used to map the simulated

tactile data to the tissue inclusion parameters. To verify the

proposed method, the realistic tissue phantom experiments

are performed.

In the following section, the design concept and imaging

principle of TSIS are introduced. Next, the inclusion parame-

ter estimation method is discussed. We use forward modeling

(FEM) and invese modeling (neural networks). Then the

proposed estimation method is validated using the custom

made tissue phantoms. Finally, the conclusions are presented.
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II. TACTILE SENSATION IMAGING SYSTEM

In this section, we present the design concept and imaging

principle of TSIS.

A. System Overview

Fig. 1 shows the schematic of TSIS. The system in-

corporates an optical waveguide unit (2.5cm x 2.5cm), a

light source unit (LEDs), a high resolution camera unit, and

a computer unit. The optical waveguide unit is the main

sensing probe of the system. The waveguide is composed of

multi-layered polydimethylsiloxane (PDMS), which is a high

performance silicone elastomer [13]. Our high resolution

CMOS camera has 8.4 µm × 9.8 µm individual pixel size

(Allied Vision Technology, Germany). It has a pixel array

of 768 (H) × 492 (V) with 8 bit depth. The camera is

placed below a waveguide. A glass plate is placed between

camera and waveguide. The internal light source is a white

LED with a diameter of 1.5 mm. There are four LED light

sources placed on four sides of the waveguide to provide

illumination.

Fig. 1: The schematic of tactile sensation imaging system.

B. Tactile Sensation Imaging Principle

TSIS operates based on the optical phenomenon known

as the total internal reflection (TIR) principle of light in the

waveguide [14]. To achieve TIR in the waveguide, light is

injected into the waveguide under the acceptance angle [12].

Then the light is totally reflected. After trapping the light in

the waveguide, if the waveguide is compressed by an external

force due to the stiff tissue inclusion, the contact area of

the waveguide deforms and causes the light to scatter. The

scattered light is then captured by the high resolution camera

and saved it as an image. Fig. 2(a) and 2(b) illustrates the

conceptual diagram of the sensing principle.

C. Example of Tissue Inclusion Detection

To get a sample tactile data of tissue inclusion, a realistic

tissue phantom with 2 mm diameter spherically shaped

inclusion is purchased from MammaCare Corp., FL. Using

TSIS, the tactile data of a tissue inclusion is obtained. Fig.

3(a) shows the imaging experiment to obtain the tactile data

of tissue inclusion using TSIS. Fig. 3(b) shows the initial

gray scale tactile data. In Fig. 3(c), a false color scale is

used on the original gray scale for the clearer visualization.

(a) (b)

Fig. 2: The concept of the tactile sensation imaging principle.

(a) The light is injected into the waveguide to totally reflect.

(b) The light scatters as the waveguide deforms due to the

stiff tissue inclusion.

Then the 3-D reconstruction is performed based on the pixel

value as the depth information.

(a) (b) (c)

Fig. 3: The tactile sensation imaging experiment for a breast

tissue inclusion. (a) Obtaining tactile data of a tissue inclu-

sion using TSIS, (b) Raw gray scale tactile data, (c) Color

visualization with 3-D reconstruction.

III. TISSUE INCLUSION PARAMETER ESTIMATION

In this section, we present a tissue inclusion’s parameter

estimation method to determine the absolute stiffness and

geometric information. We use tactile images obtained from

TSIS. The method consists of finite element method (FEM)

based forward algorithm, and artificial neural network (ANN)

based inversion algorithm.

A. Problem Formulation

To estimate embedded lump mechanical properties, for-

ward and inversion algorithms were developed based on the

idealized tissue model. The assumptions used in the model

are similar to those used in [9]. The tissue is assumed as a

slab of material of constant thickness that is fixed to a flat,

incompressible chest wall. The tissue inclusion is assumed

to be spherical. Both tissue and inclusion are assumed linear

and isotropic. The interaction between TSIS and tissue is

assumed to be frictionless.

B. Forward Algorithm

The forward algorithm is designed to investigate the

relationship between tissue inclusion parameters and tactile

data. In this paper, 3-D FEM is considered for the forward

algorithm. The FEM modeling is performed based on the

idealized tissue model using ANSYS version 11.0, an en-

gineering simulation software package. The designed FEM

model is shown in Fig. 4.

If TSIS compresses against the tissue surface containing

a stiff tissue inclusion, the sensing probe of TSIS deforms.
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Fig. 4: The FEM model based on the idealized tissue model.

Throughout FEM, the deformed shape of sensing probe is

captured in response to different inclusion parameters, size

d, depth h, and Young’s modulus E. To quantify the amount

of sensing probe deformation, the following definitions are

used: Maximum deformation, O1

FEM , is defined as the

largest vertical displacement of the FEM element of sensing

probe from the non-deformed position. Total deformation,

O2

FEM , is defined as the vertical displacement summation

of FEM elements of sensing probe from the non-deformed

position. Deformation area, O3

FEM , is defined as the pro-

jected area of the deformed surface.

In the FEM based forward algorithm, (d, h, E) are input

variables and maximum deformation, O1

FEM , total deforma-

tion, O2

FEM , and deformation area, O3

FEM , of sensing probe

are output variables. To investigate the relationship between

the input variables (d, h, E) and the output variables (O 1

FEM ,

O2

FEM , O3

FEM ), 134 input variables (d, h, E) are randomly

generated with the minimum and maximum constraints of d

as [2 mm; 13 mm], h as [4 mm; 12 mm], and E as [40 kPa;

120 kPa] [1]. Then 134 output variables (O 1

FEM , O2

FEM ,

O3

FEM ) corresponding to 134 input variables (d, h, E) are

investigated using FEM.

C. Mapping Tactile Data

It is necessary to relate FEM tactile data (O1

FEM , O2

FEM ,

O3

FEM ) and TSIS tactile data (O1

TSIS , O2

TSIS , O3

TSIS). To

map two different tactile data, the calibration tissue phantom

with 9 embedded stiff inclusions has been manufactured by

CIRS, Inc., VA. This calibration tissue phantom was made

of a silicone composite having Young’s modulus of approxi-

mately 5 kPa. The inclusion was made using another silicone

composite with the stiffness higher than the surrounding

tissue phantom. We custom designed this calibration tissue

phantom with varying parameters (d, h, E) as shown in Table

I.

TABLE I: The size, d, depth, h, and Young’s modulus, E,

of 9 inclusions in the calibration tissue phantom.

Number Size (d) Depth (h) Modulus (E)

1 2 mm 5 mm 120 kPa
2 8 mm 5 mm 120 kPa
3 13 mm 5 mm 120 kPa
4 7 mm 4 mm 100 kPa
5 7 mm 8 mm 100 kPa
6 7 mm 12 mm 100 kPa
7 10 mm 5 mm 40 kPa
8 10 mm 5 mm 70 kPa
9 10 mm 5 mm 100 kPa

To map TSIS tactile data to FEM tactile data, tactile

data of 9 inclusions in tissue phantoms were obtained using

TSIS. In order to quantify TSIS tactile data, maximum pixel

value, O1

TSIS , total pixel value, O2

TSIS , and deformation

area of pixel, O3

TSIS , of TSIS tactile data are computed.

The definitions of (O1

TSIS , O2

TSIS , O3

TSIS) are as follows.

Maximum pixel value, O1

TSIS , is defined as the pixel value

in the centroid of the tactile data. Total pixel value, O 2

TSIS ,

is defined as the summation of pixel values in the tactile

data. Deformation area of pixel, O3

TSIS , is defined as the

number of pixel greater than the specific threshold value k

in the tactile data. We assume that there is no noise in the

tactile data.

To find the relationship between TSIS tactile data to FEM

tactile data, the graphs of (O1

FEM : O1

TSIS), (O2

FEM :

O2

TSIS), and (O3

FEM : O3

TSIS) were generated. Then using

the linear regression method, the relationship between TSIS

tactile data to FEM tactile data is found. Figs. 5(a) to 5(c)

represent linear regression results. Since the tactile data is

normalized, three data in each graph exists in the same

position (1,1). Using these three relationships, the newly

obtained TSIS tactile data (O1

TSIS , O2

TSIS , O3

TSIS) can

be transformed into the FEM tactile data (O1

FEM , O2

FEM ,

O3

FEM ). In this way, we relate TSIS tactile data with FEM

tactile data.

D. Inversion Algorithm

The goal of an inversion algorithm is to estimate (d, h, E)

through obtained TSIS tactile data (O1

TSIS , O2

TSIS , O3

TSIS).

We estimate(O1

FEM , O2

FEM , O3

FEM ) from (O1

TSIS , O2

TSIS ,

O3

TSIS) using calibrated data. Then we design an inversion

algorithm to estimate (d, h, E) using the determined (O 1

FEM ,

O2

FEM , O3

FEM ).

In this paper, the multi-layered artificial neural network

(ANN) is considered as an inversion algorithm [15]. To

train ANN, 125 input variables (O1

FEM , O2

FEM , O3

FEM )

and corresponding output variables (d, h, E) are used. The

remaining 9 (d, h, E) variables, which are used for the

calibration tissue phantom design, are used for the validation

of the proposed estimation method. For the training on ANN

algorithm, scaled conjugate gradient algorithm (SCGA) is

used due to its simple and robustness characteristics [15].

IV. EXPERIMENTAL RESULTS

To validate the proposed estimation method, tactile data

of 9 tissue inclusions in the calibration tissue phantom were

obtained using TSIS. TSIS tactile data was then quantified as

(O1

TSIS , O2

TSIS , O3

TSIS). Using the quantified data, (O1

TSIS ,

O2

TSIS , O3

TSIS), we estimated tissue inclusion parameters,

(d̂, ĥ, Ê). To measure the performance of the proposed

estimation method, the cross validation method called leave-

one-out-cross-validation (LOOCV) metric was considered

[16]. The estimation of each tissue inclusion parameters ( d̂,

ĥ, Ê) were performed 100 times per each inclusion and the

results were averaged. The averaged estimation results of

each inclusion are shown in Table II.

The final validation was performed using the root mean

squared error (RMSE). Let T be the true inclusion parame-

ters (d, h, E) in Table I, and Y be the estimated inclusion
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Fig. 5: The linear regression results between FEM tactile data and TSIS tactile data. The linear regression result between (a)

maximum deformation O1

FEM and maximum pixel value O1

TSIS , (b) total deformation O2

FEM and total pixel value O2

TSIS ,

(c) deformation area O3

FEM and deformation area O3

TSIS .

TABLE II: The estimated average size, d̂, depth, ĥ, and

Young’s modulus, Ê, of 9 inclusions in the calibration tissue

phantom.

Number Est. size (d̂) Est. depth (ĥ) Est. modulus (Ê)

1 4.11 mm 8.52 mm 74.52 kPa
2 8.11 mm 7.06 mm 83.97 kPa
3 10.73 mm 5.81 mm 79.46 kPa
4 5.77 mm 7.97 mm 78.29 kPa
5 4.91 mm 8.23 mm 78.06 kPa
6 4.94 mm 8.45 mm 77.87 kPa
7 10.11 mm 6.29 mm 84.84 kPa
8 10.74 mm 6.11 mm 76.96 kPa
9 10.57 mm 7.33 mm 82.21 kPa

parameters (d̂, ĥ, Ê) in Table II. Then RMSE ej can be

calculated as follows.

ej =

√

√

√

√

1

n
×

n
∑

i=1

(Tij − Y ij)
2
, (1)

where i is the number of inclusions which is 9 and j is the

number of tissue inclusion parameters which is 3 in our case.

Table III shows RMSE of all inclusion parameter estimation

results.

TABLE III: The root mean squared error (RMSE) of 9

inclusions parameter estimation.

Inclusion parameter RMSE

Size (d̂) 1.25 mm

Depth (ĥ) 2.09 mm

Modulus (Ê) 28.65 kPa

V. CONCLUSION

In this paper, the tissue inclusion estimation method is pro-

posed to quantify absolute stiffness and geometric parameters

of tissue inclusion. The estimation is performed based on the

tactile data obtained by the tactile sensation imaging system.

The experimental results showed that the proposed estimation

method estimates size, depth, and Young’s modulus of tissue

inclusions with root mean squared errors of 1.25 mm, 2.09

mm, and 28.65 kPa, respectively. This work is the initial step

toward achieving for early malignant tumor detection and

characterization using the tactile sensation imaging system

and associated parameter estimation method.
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