
An Adaptive Algorithm for Real-Time Electrode Calibration

P. Kidmose

Abstract— Continuous brain monitoring based on EEG
recorded from surface electrodes is believed to have potentials in
wearable medical devices. In such devices capacitive electrodes
are attractive compared to conventional electrodes because
there is no need for skin preparation and conductive gels,
and because of diminished motion artifacts. However, there
are technical challenges connected to the practical application
of capacitive electrodes. The electrode capacitance, which has
significant impact on the signal measured, will vary between
channels and will be time varying. Therefore calibration of the
electrode array is an important preprocessing step before the
signal processing. This paper proposes an algorithm for blindly
estimating the parameters of the analog signal acquisition paths,
including the capacitances of the electrodes. The algorithm
continuously estimates the parameters, based on the measured
EEG signals, and compensates for variations in the analog
signal paths. Simulations show that the algorithm can estimate
the parameters, and track changes of the electrodes capacitance
in real-time.

I. INTRODUCTION

Electroencephalography (EEG) recordings provide a non-
invasive way to monitor neural activity in the human brain at
temporal and spatial scales of interest in various applications
ranging from medical devices to brain computer interfaces
(BCI) [1].

Continuous brain monitoring based on EEG is envisaged
to become a part of everyday life in wearable medical
devices. Such devices have applications within diagnosis and
monitoring of disease progression, for therapy evaluation
and rehabilitation for neurodegenerative diseases, psychiatric
disorders [2], and sleep disorders; and for warning and mon-
itoring of seizures for e.g. epilepsy[3] and hypoglycemia[4].

Conventional EEG recordings are based on electrodes that
have galvanic connection to the body. Whether the electrode
is close to the ideal non-polarizable or ideal polarizable
electrode a half cell potential will arise in the interface
between the metallic electrode and the human body. This half
cell potential is the origin of the so called motion artifacts
which is a serious cause of interference when measuring
bioelectrical potentials [5].

As an alternative to the conventional electrodes are ca-
pacitive electrodes that measure the bioelectrial potential
through a capacitive interface to the body relying solely on
displacement currents in the electrode interface. In capacitive
electrodes no half cell potential arises and therefore no
motion artifacts are generated. Early work on capacitive
electrodes for ECG and EMG recordings are reported in
[6] and [7]; more recently [8] describes the build of an
amplifier circuit for bioelectrical potential recordings and in
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[9] and [10] it is demonstrated that this can be used for EEG
recordings.

Capacitive electrodes provide some important advantages
over conventional electrodes that makes the use of capacitive
electrodes attractive for applications within the field of the
before mentioned wearable devices:

• Contrary to conventional electrodes capacitive elec-
trodes does not require conductive gel and skin prepa-
ration. Thus capacitive electrodes may result in devices
that are easier to handle and to put in place, and more
comfortable to use.

• Capacitive electrodes do not have a metal-electrolyte
interface and hence no half cell potentials. Therefore,
contrary to conventional electrodes, capacitive elec-
trodes do not have motion artifacts.

On the other hand there are technical challenges related to
capacitive electrodes that have to be addressed. For realistic
electrode sizes the electrode capacitance is very small result-
ing in very high input impedance requirement for the front-
end amplifier circuitry. This imposes challenges and trade
offs with respect to noise and ESD protection. Furthermore
the transfer function, from potentials generated by currents
related to neural activity to the output of the instrumentation
equipment, depends on the electrode capacitance.

In practical systems the electrode capacitance will be sub-
ject to considerable uncertainties, will vary between channels
and will be time varying; thus having significant impact on
the acquired signals. Therefore calibration of the electrode
array is an important preprocessing step. Further, it is of
crucial importance in medical devices to be able to validate
if there is sufficient electrode capacitance to rely on the
acquired signals and act if this is not the case.

This paper presents an algorithm for real-time calibration
of the signal acquisition paths for use in devices that measure
bioelectrical potentials using a capacitive electrode instru-
mentation. In Section II a typical instrumentation amplifier
setup is analyzed, a discrete time model is established and the
input related noise sources are quantified. In Section III an
algorithm for estimating the parameters of the analog signal
paths is developed; and in Section IV a simulation example
demonstrates that the algorithm can estimate the parameters
of the analog signal paths and can track time varying poles
induced by e.g. electrodes movements.

II. SIGNAL PATH MODEL AND NOISE ANALYSIS

For the purpose of the following analysis an electrical
diagram of a practical instrumentation for capacitive mea-
surement of EEG signals is shown in Fig. 1. The electrodes
are modeled as ideal capacitors and are denoted CE1 and
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Fig. 1. Electrical diagram of a practical instrumentation for capacitive
measurement of EEG signals.

CE2. The DC bias current return path resistors are denoted
RA1 and RA2, and the tissue impedance from electrode to
electrode is denoted RB . The gain of the instrumentation
amplifier is set by RG. A suitable instrumentation amplifier
for this purpose could be the INA116 from TI, see [11].

The continuous time transfer function, from the electrode
differential signal to the input of the analog-digital converter
(ADC), for the instrumentation depicted in Fig.1 is

H(s) =
vADC
vB

=

(
1 +

RI

RG

)
R1C1s

R1C1s+ 1

R2C2s

R2C2s+ 1
(1)

where R1 = RA1+RA2, C1 = CE1 ·CE2/(CE1+CE2) and
RI is an integrated part of the instrumentation amplifier. For
the purpose of the parameter estimation algorithm developed
in Section III the corresponding discrete time model is
obtained using the matched pole-zero method

H(z) = K
1 + z−1

1 + a1z−1

1 + z−1

1 + a2z−1
(2)

where a1 and a2 are related to the continuous time poles
s = −1/R1C1 and −1/R2C2 respectively, and K is related
to the overall gain determined by RG and RI .

Capacitive electrodes with realistic electrode area will
typically have capacitance, within an order of magnitude,
of 10 pF. Choosing the DC bias current return path resistors,
RA1 and RA2, to 50 GΩ, and assuming 10 pF capacitance
for each electrode, yields a cut off frequency of 1.27 Hz.

The signal acquisition performance of such an instrumen-
tation is limited by noise. Because of this, and because
the noise floor will have impact on the performance of the
parameter estimation algorithm developed in the next section,
it is appropriate to make a noise analysis. An electrical
equivalent diagram, for the instrumentation amplifier part of
the diagram in Fig.1, is shown in Fig. 2. The power spectral
density of the thermal noise of the resistors is given by
v2 = 4kBTR, where kB is Boltzmann’s constant (J/K), T is
the resistor’s absolute temperature (K), and R is the resistor
value (Ω). At 20◦C this gives vn = 0.127nV

√
R/

√
Hz; thus

the bias current return path resistors result in a thermal noise
generator of 20.1 µV/

√
Hz.

To illuminate the electrode capacitance influence on the
noise, the input related noise spectra for the 4 different noise
source are shown in Fig.3, and the spectra are shown for C1

= 5 pF (solid line) and 25 pF (dashed line). Further, it is

C1

RB R1

vRB vR1 vA
iA

vn

Fig. 2. Electrical equivalent diagram for analysis of input related noise
of the instrumentation amplifier. VRB and VR1 is the thermal noise related
to RB and R1 respectively. VA is the voltage noise and IA is the current
noise of the instrumentation amplifier.

readily seen that the electrode capacitance influences the low
frequency shaping of the bioelectrical source signal1.
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Fig. 3. Input related noise spectra for the 4 different noise sources. The
spectra are shown for C1 = 5 pF (solid line) and C1 = 25 pF (dashed line).
Current noise and voltage noise values are taken from [11].

III. ELECTRODE CALIBRATION ALGORITHM

The purpose of the electrode calibration algorithm is
to compensate for gain and frequency shaping differences
between the different analog signal paths. This is obtained
by estimating the parameters in the transfer function in Eq.
2 for each signal path, and filtering with the inverse of
this transfer function. The parameter estimation is inherently
a blind problem since the source signal is unknown, and
only a filtered version of the source signal is observable.
However, it is possible to estimate the parameters based on
the assumption that the long term power spectral density of
the electrode potential is similar in between channels.

As explained later, the power spectral density must be
estimated at several frequency points in the frequency range
where the poles of the analog signal paths are located. For

1Put to the authors attention by one of the reviewer [12] provides an
excellent review of biopotential front ends, and there there is a more
thorough analysis of such front end circuitry.
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the instrumentation considered here this will be at very low
frequencies (delta band). The application that is in mind for
this algorithm is for electrode arrays with small electrode
distances. Since the EEG signals reflect aggregated electrical
activity from highly spatially distributed neural sources, and
because of the small electrode distances, the assumption
about the similarity of the power spectral density is expected
to be realistic. However, the assumption must be supported
by EEG measurements.

The power spectrum of the source signal, sk, for the
kth channel is denoted Psk(ω) = S∗

k(ω) · Sk(ω), where
Sk(ω) is the fourier transform of sk and ∗ denotes complex
conjugated. The power spectrum of the measured signal, xk,
is then

Pxk
(ω) = Psk(ω) ·H∗

k(ω) ·Hk(ω) = Psk(ω)Phk
(ω) (3)

where Hk(ω) is the transfer function for the kth channel. By
insertion of the parameterized transfer function from Eq.2 the
power spectrum, Phk

(ω), is

Phk
(ω) = K2

k

1 + ejω

1 + a1kejω
1 + e−jω

1 + a1ke−jω

1 + ejω

1 + a2kejω
1 + e−jω

1 + a2ke−jω

= K2
k

2(1 + cos(ω))

1 + 2a1k cos(ω) + a21k
2(1 + cos(ω))

1 + 2a2k cos(ω) + a22k
(4)

Now let Gxk
(ω) denote the power spectrum estimated from

the observed discrete time signal, xk, from the kth channel.
A cost-function, that measures the difference between the
observed power spectrum ratio and the parameterized power
spectrum ratio, for a system comprising M channels and
evaluated in N frequency points is

Q =
1

2

N∑
n=1

M−1∑
k=1

M∑
m=k+1

(
Gxk

(ωn)

Gxm(ωn)
− Pxk

(ωn)

Pxm(ωn)

)2

(5)

If we assume that the source signals power spectrum are
identical, i.e. Psk(ω) = Psm(ω), the cost function simplifies
to

Qs =
1

2

N∑
n=1

M−1∑
k=1

M∑
m=k+1

(
Gxk

(ωn)

Gxm(ωn)
− Phk

(ωn)

Phm(ωn)

)2

(6)

where Phk
(ω) is the power spectrum for the kth channel

parameterized as shown in Eq. 4. The assumption may
seem very restricting, but as long as there is no systematic
difference between the power spectra densities, it will have
only minor influence on the minimum for the cost function.
Choosing the number of frequency points, N , larger than the
number of parameters to be estimated, will in general reduce
the impact from deviations from the assumption.

The parameter estimates, needed for calibration, are ob-
tained by minimizing the cost function in Eq.6 with respect
to the parameters. This is a non-linear least squares problem
for which numerous numerical solving methods exist.

Next, without loss of generality, an algorithm for a 2-
channel system is developed. For M = 2 the cost function
in Eq.6 can then be written as

Q2 =
1

2

N∑
n=1

(
Gx1(ωn)

Gx2(ωn)
− Ph1(ωn)

Ph2(ωn)

)2

=
1

2
eT · e (7)

where
e = [e(ω1) e(ω2) . . . e(ωN )]

T

and
e(ωn) =

Gx1(ωn)

Gx2(ωn)
− Ph1(ωn)

Ph2(ωn)

Whether a simple steepest descent type of algorithm or
more advanced hybrid algorithms, combining the Gauss-
Newton and the steepest descent direction, is applied, we
must calculate the Jacobian matrix

J =
∂eT

∂θ
(8)

where θ = [a11 a12 a21 a22 K]
T is the parameter vector.

The parameters (a11, a12) and (a21, a22) are the parameters
associated with channel 1 and 2 respectively; and K is the
gain ratio K1/K2. Notice that because of the blind nature of
the algorithm there is a gain uncertainty, and therefore only
the ratio between channel gains can be estimated.

For the 2 channel algorithm outlined here the elements of
the nth column of the R5×N Jacobian matrix is

J1n = d
′

11(ωn)K
2 d21(ωn)

d11(ωn)2
d22(ωn)

d12(ωn)

J2n = d
′

12(ωn)K
2 d21(ωn)

d11(ωn)

d22(ωn)

d12(ωn)2

J3n = −K2 d
′

21(ωn)

d11(ωn)

d22(ωn)

d12(ωn)

J4n = −K2 d21(ωn)

d11(ωn)

d
′

22(ωn)

d12(ωn)

J5n = −2K
d21(ωn)

d11(ωn)

d22(ωn)

d12(ωn)

where

d11(ωn) = 1 + 2a11 cos(ωn) + a211

d12(ωn) = 1 + 2a12 cos(ωn) + a212

d21(ωn) = 1 + 2a21 cos(ωn) + a221

d22(ωn) = 1 + 2a22 cos(ωn) + a222

and

d
′

11(ωn) =
∂

∂a11
d11(ωn) = 2(cos(ωn) + a11)

d
′

12(ωn) =
∂

∂a12
d12(ωn) = 2(cos(ωn) + a12)

d
′

21(ωn) =
∂

∂a21
d21(ωn) = 2(cos(ωn) + a21)

d
′

22(ωn) =
∂

∂a22
d22(ωn) = 2(cos(ωn) + a22)
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The parameter estimation is based on power spectrum
estimates of the observed signals. To have a determined set
of equations the number of frequency points, in which the
power spectra are estimated, must at least equal the number
of parameters that are to be estimated. Furthermore, to obtain
a well-conditioned Jacobian matrix, the frequency points
must be chosen to be in the frequency range where the poles
of the system are.

IV. SIMULATION EXAMPLE

In the following simulation example a simple version of
the Marquardt algorithm is used with the update equation

θp = θp−1 − (JJT + µI)−1Je (9)

The subscripted p denotes the iteration number, and the
adaptation constant µ is set to 1.0.

The analog signal paths, for which the parameters are to
be estimated, is a 2-channel system with 5 parameters as
outlined in the previous section. The parameter estimation
is based on power spectrum values in 10 frequency points
logarithmic distributed between 0.1 Hz and 10 Hz. It is
assumed that the observed power spectra, Gx1 and Gx2 , are
known; while in a real world embodiment these must be
estimated from the observed signals, x1 and x2, using e.g.
an FFT based algorithm.

The simulation example shows that, given the true power
spectra estimates, the algorithm will converge fast towards
the true parameter values. In this specific specific simulation
the 4 analog poles are located at 5.0, 0.30, 2.5 and 1.6
Hz, and the gain ratio is 1.2. In the top panel of Fig.4
the trajectory of the parameters versus the iteration number
is shown. The solid lines show the parameter convergence
towards the optimal parameter values which are shown as
dashed lines. In the bottom panel the cost function, Q2,
versus iteration number is shown.

Other simulations have shown, which is also supported by
the convergenge behavior in Fig.4, that the algorithm tracks
changes in the parameters very smoothly.

In a real world implementation caution must be taken
when estimating the power spectra. It is observed from Fig.
3 that the current noise from the instrumentation amplifier
and the thermal noise contribution from R1 is not shaped
by the s = −1/R1C1 pole. Thus, reliable power spectra
estimates can only be obtained if the levels of the signals are
significantly higher than the noise floor generated by these
noise sources.

V. CONCLUSION

This work proposes a blind adaptive algorithm for real-
time electrode calibration in multiple channel systems. Sim-
ulations show that the algorithm can estimate the parameters
related to the analog signal path, and that it can track changes
in these parameters. These characteristics are important in
real world wearable devices, because the parameters of the
analog signal paths are unknown and time varying, and
therefore must be estimated in order to calibrate the electrode
system.
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Fig. 4. Top panel Trajectory of the parameters versus the iteration
number. The solid lines show the parameter convergence towards the optimal
parameter values shown as dashed lines. The right hand side axis is for the
filter coefficients, a11,a12, a21 and a22; and the left hand side axis is for
the gain ratio parameter, K. Bottom panel Cost function versus iteration
number showing the convergence of the algorithm
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