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Abstract— Multi-sensor electrodes for extracellular recording
of neuronal action potentials have significantly increased the
signal-to-noise ratio (SNR) in neurophysiological experiments,
ultimately leading to a more accurate interpretation of scientific
data. Apart from improving SNR, we hypothesize that these
electrodes can be used to estimate the location of underlying
neuronal signal sources, and perhaps other parameters such
as the size and shape of neurons whose activities are being
recorded. This study introduces the multiple signal classification
(MUSIC) algorithm to the problem of neuron localization and
presents the first experimental demonstration of signal source
localization using commercially available 4-sensor electrodes
(tetrodes).

I. INTRODUCTION

Extracellular recording of action potentials (APs) from one

or more neurons has become a fundamental technique for

in vivo neurophysiology studies, especially those involving

behaving animals [1] and humans [2], where direct intracel-

lular measurements of APs may be impractical or impossible.

With the advent of multi-sensor recording electrodes, such

as stereotrodes [3] and tetrodes [4], the signal-to-noise ratio

(SNR) of extracellular recordings has been significantly

improved. This facilitates more accurate signal analysis, such

as AP detection [5], [6] and classification [7], [8], and in turn

a more accurate interpretation of scientific data.

The typical tetrode layout consists of 4 sensors ∼50

µm apart, which can be achieved by twisting a bundle of

4 microwires [4], coating 4 independent platinum-tungsten

cores with glass [9] (see Fig. 1), or micro-machining planar

silicon arrays with iridium recording sites [10]. In addition

to improving SNR, tetrodes have been used for identifica-

tion of bursting neurons [4], estimation of voltage decay

constants [4], and establishing the correspondence of APs

over multiple recording sessions [9]. Less traditional uses

of tetrodes include localization of AP sources [11] and

estimation of the flow of electric charges during APs [12].

In this article we introduce a novel technique for lo-

calization of neurons based on a multiple signal classifi-

cation (MUSIC) algorithm. While originally developed for

estimation of parameters in antenna arrays [13], MUSIC

has been successfully employed in biomedical applications
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Fig. 1. Scanning electron microscope image of tetrode (Thomas Recording,
Giessen, Germany). Two platinum-tungsten sensors are visible from this
perspective.

such as localization of electroencephalogram and magne-

toencephalogram signal sources [14]. Motivated by these

applications, we hypothesize that the MUSIC algorithm can

also be applied to the localization of neurons based on

their multi-sensor AP measurements. In addition, our study

provides an experimental validation of this technique with a

commercial tetrode device placed in proximity to a dipole-

like stimulator. In particular, we show that the estimated

source lies within ∼40 µm of the true signal source. By

factoring in the heterogeneity of the conductive medium, the

localization error can be further reduced to <3 µm.

II. BACKGROUND AND SIGNIFICANCE

The first experimental study concerned with localization

of neurons, often referred to as source localization, was

reported by Csicsvari et al. [15], who recorded extracellular

APs using two-dimensional (2D) silicon arrays. The vertical

position of neurons was estimated as the depth of a sensor

with the largest AP amplitude. In a related study, Bartho

et al. [16] estimated the position of active neurons as a

weighted combination of the locations of recording sensors.

These approaches, however, are largely heuristic and make

no attempt to estimate neurons’ full 3D locations.

Chelaru and Jog [17] developed a deterministic source

localization algorithm for microwire tetrodes based on a

simple forward model. By numerically inverting the model,

they reported on the ability to localize three distinct neurons,

whose activities were simultaneously recorded with a single

tetrode. However, this study as well as those in [15] and [16]

were performed in vivo, where the actual positions of neurons

were unknown, and so these methods lack validation. Simi-

larly, Somogyvari et al. [18] developed a model-based source

localization technique suitable for linear electrode arrays, but

the 3D location of the source could not be estimated due to

the linear arrangement of the sensors.
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Inspired by the study in [17], we demonstrated that the

inversion of a simple monopole forward model

φi(t) =
Im(t)

4πσri(x, y, z)
i = 1, 2, 3, 4, (1)

admits a closed-form solution [19], i.e. the position (x, y, z)
of the neuronal source can be found analytically. In the

above model, φi represents the extracellular potential at

sensor i, Im is the time-dependent membrane current, σ is

the conductivity per unit length of extracellular space, and

ri(x, y, z) is the distance between the sensor i and the source.

Fig. 2 illustrates an application of this technique to source

localization in a two-neuron computational model, where

individual neurons were modeled using the compartmental

approach [20]. Note, however, that the inversion of (1) is

not guaranteed, especially if there is significant mismatch

between φi predicted by the monopole model and simulated

potentials, ψi [19].

Fig. 2. Simulation of 50 noisy APs (duration 2 msec) sensed by a
tetrode(gray cone) with sensors marked by ◦. Red and blue traces correspond
to the cells on the left and bottom right, respectively. The cylindrical
compartments are dendrites, the axon hillock (AH), and the initial segment
(IS), and the spherical compartment is the soma. Estimated source locations
are marked by +.

The ability to localize neurons whose APs are being

recorded may significantly alleviate the tedious process of

guidance of multi-sensor electrodes often employed in acute

recording experiments. Furthermore, by performing source

localization over time, migration trends of neurons may be

estimated, which may further improve these experimental

procedures. In chronic recording experiments, the ability

to track neurons’ positions over time may help distinguish

changes in recorded signals due to these tissue drifts from

those due to other factors such as neuronal plasticity and

adaptation, as well as scar tissue formation and reactive

gliosis. In summary, the ability to localize neurons based

on their extracellularly recorded APs may have a profound

impact on the way recording experiments are performed in

both acute and chronic conditions.

III. MATERIALS AND METHODS

The MUSIC algorithm [13] offers an alternative solution

to the source localization problem. It assumes that multi-

sensor measurements, Ψ ∈ R
m×1, of a signal originating

from a single source can be modeled as

Ψ(t) = a(r)s(t) +w(t), (2)

where m is the number of sensors, a ∈ R
m×1 is the so-

called lead field vector (LFV), r = [x, y, z]T is the unknown

location of the source, s ∈ R
1×1 is the source signal, and

w ∈ R
m×1 is additive noise. In the case of neuronal source

localization with a tetrode (m = 4), the elements of a

are ai = 1/(4πσri(r)), i = 1, 2, 3, 4, while the source

signal is the membrane current, Im [compare (1) and (2)].

However, unlike the framework presented in [19] that seeks

the exact inversion of the model (1), MUSIC utilizes an op-

timization framework, and is therefore less susceptible to the

mismatch between measurements Ψ and model predictions.

More specifically, MUSIC seeks the source location whose

LFV is most orthogonal to the noise subspace EN , i.e.

r
⋆ = argmin

r

a
T(r)ENE

T
N
a(r)

aT(r)a(r)
, (3)

where EN ∈ R
4×3 can be found by the singular value

decomposition of Ψ ∈ R
4×n. Assuming the number of time

samples n > 4, the columns of EN can be chosen as the

left singular eigenvectors of Ψ corresponding to the smallest

three singular values.

Experimental setup consisted of an inverted microscope

(Olympus IX51, Olympus America, Center Valley, PA), a

tetrode motorized microdrive system (Thomas Recording,

Giessen, Germany), and a data acquisition system (Tucker-

Davis Technologies, Alachua, FL). In addition, an auxil-

iary system (MP150, Biopac Systems, Goleta, CA) was

connected to a single-sensor microelectrode (Alpha Omega

Co. USA, Alpharetta, GA), which was used as a stimu-

lator. Both the tetrode microdrive (Mini Matrix, Thomas

Recording, Giessen, Germany) and the stimulating electrode

were mounted on a microscope-compatible micromanipula-

tor (Narishige International USA, East Meadow, NY). The

stimulating electrode was placed in the center of a Petri dish

filled with 0.9% saline solution, with a reference electrode

that consisted of a wire placed against the Petri dish wall

along its circumference. While technically a dipole, the

electric field of this stimulator, at least locally around the

stimulating electrode tip, is consistent with a monopole.

The tetrode was positioned near the tip of the stimulating

electrode using a combination of coarse (micromanipulator)

and fine (microdrive) adjustments under the microscope guid-

ance. The stimulator was programmed using AcqKnowledge

software (Biopac Systems, Goleta, CA). All experiments

were performed at a room temperature (20 ◦C).

IV. RESULTS AND DISCUSSION

A. Results

To facilitate accurate position measurements, the focal

plane of the microscope was adjusted until the tip of the
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Fig. 3. (A) Average signals (N = 50) recorded by the sensor at the tetrode tip. (B) The same signals scaled to compensate for inhomogeneous conductivity.

stimulating electrode was clearly visible. The tetrode (Fig. 1)

was then placed in the vicinity of the stimulating electrode

and its position was fine-tuned using computer control of

the motorized microdrive. The adjustment was applied until

the tetrode tip reached the focal plane. Therefore, throughout

this section, we will assume that the depths (“z-coordinates”)

of two tips are the same. Prior to the experiment, the

impedances of the four sensors were measured at 1 kHz with

an impedance monitor (Bak Electronics, Mount Airy, MD)

and were found to be in the range 0.5-0.9 MΩ.

Using AcqKnowledge software, a stimulus pattern was

programmed as a sine wave with a frequency of 7 Hz. Note

that this frequency is not a subharmonic of the power line

noise (60 Hz), and therefore the signals were unambiguously

detectable at the tetrode sensors. The pattern was delivered

to the stimulating electrode by utilizing the MP150 system’s

analog output channel, with the signal amplitude set to 1 V.

To ensure statistically meaningful results, approximately 7

seconds of data were recorded (∼50 cycles). The data were

amplified, digitized (sampling rate: 25 kHz, resolution: 16

bits), and saved for further analysis. The above procedure

was then repeated by changing the position of the tetrode

with the micromanipulator.

Fig. 3(A) shows the recorded stimulation patterns aver-

aged over 50 cycles. The individual traces represent signals

recorded by the sensor located at the tip as the tetrode’s

position was varied in the vicinity of the stimulating elec-

trode (see Fig. 4). As predicted by the model (2), the

strongest signal is recorded at position 2, where the distance

between the sensor and the source (the tip of the stimulating

electrode) is smallest (∼50 µm). Conversely, the signal is

the weakest at position 1, which is ∼100 µm away from the

source. By supplying these signals to the source localization

algorithm (3), the estimated location of the source is found to

be: r⋆ = (9.8,−39.7,−0.11) µm, with the origin defined at

the source location and axes defined as illustrated in Fig. 4. It

can also be seen in Fig. 4 that the estimated source location

is ∼40 µm away from the true source location.

Such a relatively large bias indicates that the model

proposed by (2) is not accurate. To circumvent this problem,

we redefined the LFV such that āi = 1/(4πσiri(r)), where

Fig. 4. Superposition of microscopy images showing four tetrode positions
(marked by 1-4). On the left is the stimulating electrode with the source
defined at its tip. Blue and red dots respectively mark the estimated source
location before and after accounting for the heterogeneity of the medium.

at each position we have: σi = kiσ, with σ representing

some baseline value. By assuming k1 = 1, it readily follows

that: ki ≈ (ψ1(t)r1)/(ψi(t)ri), i = 2, 3, 4. While ki is

a time-dependent quantity, we have shown in [21] that its

value remains stable as long as ψi(t) 6= 0. After elementary

calculations, we obtained: k2 = 1.31, k3 = 1.21, and

k4 = 0.79. This allows the model (2) to be redefined as:

Ψ̄(t) = a(r)s(t) + w̄(t), (4)

where ψ̄i(t) = kiψi(t), i = 1, 2, 3, 4, represent the scaling

of the original measurements. Fig. 3(B) shows the average

patterns after scaling. Note that the signal at position 1

remains unchanged (k1 = 1). By estimating the location

of the source (3) with these scaled data, we obtained: r⋆ =
(−0.5, 2.9,−0.05) µm. The estimated source location is also

shown in Fig. 4 and is <3 µm away from the source location.

B. Discussion

The proposed algorithm was validated using only the

sensor at the tetrode tip, and the “virtual tetrode” was formed

by placing the tetrode at 4 different locations. This scenario

is not applicable in experimental practice since tetrodes

primarily move in a linear fashion. The main reason for

69



adopting this approach, as opposed to utilizing all sensors at

a single tetrode location, is that the sensors in general cannot

be visualized under the microscope (with the exception of the

tip), and so their exact locations remain unknown. Based on

manufacturer’s data and the knowledge of the tip location,

constraints can be placed on the location of the remaining

sensors. MUSIC can then be used to estimate the locations of

both the source and the remaining sensors, however, the lack

of the ground truth would confound the validation process.

By assuming homogeneous isotropic medium, i.e. σ =
const., the ratio of the signals in Fig. 3(A) is determined

by the ratio of the distances between the tetrode tip and

the source. However, by comparing the signals at posi-

tions 1 and 4 (both positions are ∼100 µm from the source),

it is apparent that the homogeneity assumption must be

violated. Note that the choice k1 = 1 is arbitrary and must

be interpreted in the context of k2, k3 and k4. Based on

the obtained values, it follows that the conductivity between

the source and position 2 is the highest, while that between

the source and position 4 is the lowest. Finally, note that

in addition to inhomogeneity, these differences could be

explained by directional sensitivity (anisotropy).

While the proposed method has been developed and

experimentally validated on a single source [c.f. (2)], it

readily extends to multiple sources such as dipoles. This is

significant since there are neurons, such as layer-4 pyramidal

cells, whose elongated dendritic trees generate electric fields

that are reminiscent of dipoles [22]. On the other hand,

the electric fields of radially symmetric neurons, such as

stellate cells, tend to be closed and thus are consistent

with monopoles. Therefore, in a more general framework,

in addition to localizing neuronal sources, multi-sensor mea-

surements of APs may be used for estimating the shape of

a neuron whose activity is being recorded.

V. CONCLUSIONS AND FUTURE WORK

We have introduced a neuron localization scheme based on

the MUSIC algorithm that utilizes multi-sensor extracellular

AP measurements. While the method was developed for

tetrodes, it readily extends to other types of multi-sensor ar-

rays, and can be adapted to other types of generative models

such as dipoles. We have also presented the first experimental

validation of this technique using a commercial tetrode

device. Based on the experimental results, we conclude that

the localization of neuronal sources with tetrodes is feasible,

although the estimated source location may be biased due to

the heterogeneity and anisotropy of the extracellular medium.

Our future research efforts will be directed toward in vitro

validation of the proposed technique on neural systems. This,

for example, may be achieved by utilizing cortical brain

slices, where specific neurons can be directly stimulated by

a micropipette to elicit APs. Using tetrodes and other types

of multi-sensor arrays [10] to record from such neurons,

valuable data will be collected. In addition to validating the

positions and, perhaps, the shapes of these neurons, other

parameters such as the intensity (peak membrane current)

of the source may be estimated. Since smaller neurons gen-

erate smaller membrane currents [23], the estimated source

intensity may be used to estimate the size of the neuron.
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