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Abstract— Classification tree-based risk stratification models
generate easily interpretable classification rules. This feature
makes classification tree-based models appealing for use in a
clinical setting, provided that they have comparable accuracy
to other methods. In this paper, we present and evaluate the
performance of a non-symmetric entropy-based classification
tree algorithm. The algorithm is designed to accommodate
class imbalance found in many medical datasets. We evaluate
the performance of this algorithm, and compare it to that of
SVM-based classifiers, when applied to 4219 non-ST elevation
acute coronary syndrome patients. We generated SVM-based
classifiers using three different strategies for handling class
imbalance: cost-sensitive SVM learning, synthetic minority
oversampling (SMOTE), and random majority undersampling.
We used both linear and radial basis kernel-based SVMs. Our
classification tree models outperformed SVM-based classifiers
generated using each of the three techniques. On average,
the classification tree models yielded a 14% improvement in
G-score and a 21% improvement in F-score relative to the
linear SVM classifiers with the best performance. Similarly,
our classification tree models yielded a 12% improvement in
G-score and a 21% improvement in the F-score over the best
RBF kernel-based SVM classifiers.

I. INTRODUCTION

Classification tree-based risk stratification models have
the advantage of providing easily interpretable classification
rules derived from the tree. The classification rules provide
justification for why a patient has been classified as high
or low risk. This feature makes classification tree-based
models appealing for use in a clinical setting, provided that
they have comparable accuracy relative to other methods. In
this paper, we present a novel non-symmetric entropy-based
classification tree algorithm, and compare its performance for
cardiovascular risk stratification to those of Support Vector
Machines (SVM) based classifiers.

Our algorithm addresses two critical issues in classification
tree learning: 1) the order in which variables are selected
and 2) discretization of continuous variables. Both of these
are made challenging by the class imbalance in medical
datasets. Traditional classification tree induction algorithms
such as C4.5 [1] and CART [2] use Shannon entropy and
the Gini index as measures of class incoherence during tree
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induction. These measures are suitable under the assumption
that both positive and negative examples are well-represented
in a dataset. But this is not usually true for medical datasets.
For example, amongst the patients who have suffered a mild
ACS, only ≈ 2% will suffer cardiovascular death within next
three months. In this paper, we present an algorithm that uses
a non-symmetric entropy-based class incoherence measure
that accounts for the class imbalance in the data.

Another key feature of our algorithm is that it preserves
context sensitivity of cutoffs when discretizing continuous
variables. For example, it may choose age x as the cutoff for
high risk for patients with a particular clinical history and
age y as the cutoff for patients with another clinical history.
C4.5 and CART also have this feature, but our algorithm uses
a distinctive bootstrap aggregating technique [3] for robust
estimation of cutoffs.

We test our algorithm on a highly imbalanced medical
dataset, consisting of patients who suffered from a non-
ST elevation acute coronary syndrome (NSTEACS), i.e.,
a myocardial infarction without ST-segment elevation or
unstable angina. We used cardiovascular death within 90
days as the endpoint. Using the same data set, we gen-
erated SVM based classifiers, with linear and radial basis
function (RBF) kernels, for risk stratification. To generate
SVM classifiers that can handle class imbalance, we used
three popular strategies found in the literature: 1) Cost-
sensitive SVM learning, 2) Synthetic Minority Oversampling
Technique (SMOTE) [4] and 3) Random majority under-
sampling.

In our experiments, our classification tree models outper-
formed SVM-based classifiers generated using each of the
three techniques. On average, the classification tree models
yielded a 14% improvement in G-score [5] and a 21% im-
provement in F-score [5] over the linear SVM classifiers with
the best performance. Similarly, on average our classification
tree models yielded at least 12% improvement in G-score and
at least 21% in the F-score over the best RBF kernel-based
SVM classifiers. All the results were statistically significant.

The rest of the paper is organized as follows. In Section II,
we review a commonly used classification algorithm relevant
to this application. In Section III, we present an overview of
our classification tree algorithm. In Section IV , we present
results and analysis of our approach. Finally, Section V
presents a summary and conclusions.
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II. BACKGROUND

A. Support Vector Machines

A support vector machine (SVM) [6] is a supervised
learning technique that yields a classifier based on a set of
N training examples {x1,x2, ...xN} and their corresponding
class labels y ∈ {−1, 1}N . Each training example xi is an
m dimensional vector, representing m features. Given the
training examples and their labels, the SVM yields a decision
hyperplane that provides a maximum margin separator for
the training examples based on their labels. A decision hyper-
plane is described by a weight vector, w = {w1, w2, ..., wm}
and the intercept, b. In the primal form, the SVM for a linear
kernel is described as the following optimization problem:

min{1
2
wT w + C

N∑
i=1

ξi} (1)

subject to the constraints:

yi(wT w + b) ≥ 1− ξi; ξi ≥ 0 (2)

where, parameter C penalizes training errors.
For problems where the data from different classes are not

linearly separable, a radial basis function (RBF) kernel SVM
can be used.

K(xi, xj) = exp(−γ||xi − xj ||2) (3)

B. Strategies for SVM modeling for Unbalanced Data Clas-
sification

The classification performance of an SVM-generated clas-
sifier is sensitive to high class imbalance. It is prone to gener-
ating a classifier that is biased towards correctly classifying
examples from the majority class [7], [8]. We review the
traditional approaches used to deal with SVM modeling from
unbalanced data. We refer to the examples from the minority
class as positive examples.

1) Cost-sensitive SVM: A cost-sensitive SVM (CS-SVM)
uses two cost factors C+ and C− to adjust the cost of false
positive vs. false negatives [9]. The cost-sensitive SVM can
be described as the following optimization problem:

min{1
2
wT w + C+

∑
i:yi=1

ξi + C−
∑

j:yj=−1

ξj} (4)

subject to the constraints given by Equation 2.
We choose the cost factors C+ and C− such that they

satisfy the ratio:

C+

C−
=

number of negative training examples
number of positive training examples

(5)

2) Synthetic Minority Oversampling Technique (SMOTE):
SMOTE is a oversampling approach in which the minority
examples are oversampled by creating ‘synthetic’ exam-
ples [4]. The synthetic examples are created in the feature
space. For each minority sample, synthetic samples are
introduced along the line segments joining the minority
sample with each of the k minority class nearest neighbors.

We use five nearest neighbors in our implementation. After
oversampling, the number of positive and negative examples
in the training set is roughly equal. We refer to the SVMs
generated using SMOTE as SMOTE-SVM.

3) Random Majority Under-sampling: In random major-
ity under-sampling the majority class examples are randomly
under-sampled such that the number of positive and negative
examples in the training set is roughly equal. We refer to the
SVMs generated using random undersampling as RU-SVM.

III. OUR ALGORITHM
In this section, we give a brief description of our binary

classification tree induction tree algorithm (Figure 1). The
details of the algorithm can be found in [10]. The classifica-
tion tree is comprised of two phases: the growth phase and
the pruning phase.
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Fig. 1. Algorithm for classification tree learning using non-symmetric
entropy measures.

A. The Growth Phase

There are two main steps within the growth phase: 1)
binary discretization of continuous variable and, 2) selection
of which variable to use to split a given node.

We use a supervised binary discretization method that uses
Bagging (Bootstrap aggregating) [11] for robust estimation
of cutoffs. The discretization method described in [12] uses
warped entropy, a non-symmetric entropy measure. Given a
training sample of size N , the discretization method gen-
erates r new training sets, called replicates, using Bagging.
For each replicate, the method evaluates each candidate cut
point using a weighted joint warped entropy (WJE) measure
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and selects the cutoff that minimizes WJE. The median value
of the cutoffs generated from r replicates is the final binary
cutoff used to discretize the continuous variable.

Once all the continuous variables are discretized, we select
a variable on which to split a given node of the tree. We eval-
uate each candidate variable based on the class incoherence
of the sets generated by splitting the node using that variable.
Class incoherence of a set measures the dissimilarity of class
label of the examples that belong to the set. The candidate
variable that minimizes class incoherence of the resulting
split is selected. We use an asymmetric entropy-based class
incoherence measure [13], [12].

We repeat the discretization and the variable selection
steps until we reach a node with examples that belong to
the same class or we have used all the variables along the
path from the root node to the given node. We refer to the
classification tree generated at the end of the growth phase
as the maximal tree.

B. The Pruning Phase

The maximal tree generated in the growth phase is usually
large, complex, and over fit to the training data. To improve
generalization of the classification tree, we prune the tree
using a Fisher’s exact test (FET) based pruning approach as
described in [14]. We use 0.05 as the p-value threshold for
determining whether or not to prune a node of the maximal
tree.

After pruning the maximal tree, we assign a specific class
label to each leaf node using a weighted majority rule.
Examples from the majority class get a weight of 1, while
the examples from the minority class get a weight equal to
the ratio given in Equation 5.

We refer to the classification tree generated using our
algorithm as Non-symmetric entropy-based Classification
Tree (NonSym) in the rest of the paper.

IV. EXPERIMENTS

A. Data Set

We used data from 4219 non-ST elevation acute coronary
syndrome (NSTEACS) patients, and considered cardiovas-
cular death within 90 days as an endpoint. There were 83
(≈ 2%) cardiovascular deaths within 90 days.

For both NonSym and SVM classifiers, we used as
features four continuous variables (age, deceleration capac-
ity [15], heart rate variability (LF-HF) [16] and morpho-
logical variability [17] and five discrete variables (history
of hypertension, smoking history, prior history of myocar-
dial infarction, history of congestive heart failure, and ST-
depression (≥0.5mm)).

B. Methodology

In each of the experiments, we drew 100 training and test
sets from the data-set. Each training set contained 2/3 of
the data-set (2813 patients) and its corresponding test set
contained the remaining 1/3 of the data-set (a disjoint set of
1406 patients).

In each of the 100 cases, we used the algorithm described
in Section III to induce a classification tree based on the
training data set. We evaluated the performance of the
classification tree, on the corresponding test set. We also
generated and evaluated classification tree risk models using
pre-discretized values for the continuous variables (Pre-
discretized). The continuous variables were pre-discretized
using cut points taken from the literature for cardiovascular
risk stratification. The discretized variables were then used
to generate classification tree using asymmetric entropy-
based class incoherence measure. This experiment was done
to investigate the importance of context-sensitive cutoffs
for risk stratification. The classification tree algorithm was
implemented in MATLAB.

Using the same set of 100 training sets, we generated
SVM classifiers using the SVMlight package [18]. We picked
SVM parameters that yielded the best average classification
performance, as measured by G-score and F-score (described
below), on the 100 test sets. For the linear SVMs (LSVM),
we performed a parameter search for C on an exponentially
growing sequence, C = {2−13, 2−11, ..., 211, 213}. For the
radial basis kernel-based SVMs (RBFSVM), we performed
a grid search for the parameters C and γ on exponentially
growing sequences for each. We explored the parameters in
the range {2−13, 2−11, ..., 211, 213}.

The risk stratification performance of each classification
model was evaluated in terms of G-score (Equation 8), which
is the geometric mean of recall and precision, and the F-score
(Equation 9) using recall and precision on the minority class:

Recall =
true positives

true positives + false negatives
(6)

Precision =
true positives

true positives + false positives
(7)

G− score =
√
Recall ∗ Precision (8)

F − score =
2 ∗Recall ∗ Precision
Recall + Precision

(9)

We evaluated the statistical significance of the results using
a paired samples t-test [19] and the Wilcoxon test [20].
We consider a difference in performance as statistically
significant if the p-value is < 0.05.

C. Results

Table I presents the mean scores for all the different
classifiers. NonSym outperformed all the other classifiers.
The improvement in both F-score and G-score yielded by
NonSym relative to Prediscretized demonstrates the impor-
tance of context-sensitive cutoffs for risk stratification.

Table II shows the mean % improvement in performance
yielded by our classification tree models relative to the SVM
classifiers. NonSym outperformed all SVM classifiers in
terms of both G-score and F-score. When compared to the
linear SVMs with the best mean scores, NonSym provided a
14% and a 21% mean improvement in G-score and F-score
respectively. When compared to the RBF kernel-based SVMs
with the best mean scores, NonSym had a 12% and a 21%
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TABLE I
MEAN G-SCORE AND F-SCORE OF OUR CLASSIFICATION TREE MODELS

COMPARED TO SVM CLASSIFIERS.

Mean G-score Mean F-score
NonSym 0.212 0.114
Prediscretized 0.174 0.085
CS-LSVM 0.189 0.094
SMOTE-LSVM 0.190 0.099
RU-LSVM 0.179 0.087
CS-RBFSVM 0.191 0.096
SMOTE-RBFSVM 0.191 0.099
RU-RBFSVM 0.186 0.088

mean improvement in G-score and F-score respectively. All
the results were statistically significant.

TABLE II
MEAN % IMPROVEMENT IN G-SCORE AND F-SCORE YIELDED BY OUR

CLASSIFICATION TREE MODELS RELATIVE TO THE SVM CLASSIFIERS.

NonSym vs. G-score
Mean % t-test Wilcoxon

Improvement p-value p-value
CS-LSVM 13.6% <0.001 <0.001
SMOTE-LSVM 14.0% <0.001 <0.001
RU-LSVM 21.2% <0.001 <0.001
CS-RBFSVM 12.0% <0.001 <0.001
SMOTE-RBFSVM 12.4% < 0.001 < 0.001
RU-RBFSVM 15.4% <0.001 <0.001

NonSym vs. F-score
Mean % t-test Wilcoxon

Improvement p-value p-value
CS-LSVM 28.1% <0.001 <0.001
SMOTE-LSVM 21.2% <0.001 <0.001
RU-LSVM 41.6% <0.001 <0.001
CS-RBFSVM 25.1% <0.001 <0.001
SMOTE-RBFSVM 21.2% <0.001 <0.001
RU-RBFSVM 37.0% <0.001 <0.001

V. SUMMARY AND CONCLUSIONS

We presented and evaluated a binary classification tree
induction algorithm for development of risk stratification
models for cardiovascular death. Our algorithm uses non-
symmetric entropy based measures for both determining the
order of variables in the tree and discretizing continuous vari-
ables that are incorporated in the model. The non-symmetric
entropy measures allow our algorithm to address the chal-
lenge of class imbalance prevalent in medical datasets.

We focus our work on the specific application of risk
stratifying patients with ACS. We compared the performance
of our classification tree-based models with SVM classifiers.
To model SVM from unbalanced data, we generated SVMs
using three different approaches: cost-sensitive SVM learn-
ing, synthetic minority class under-sampling and random
majority class oversampling.

Our results show that in addition to having the advantage
of generating interpretable classification rules, our classifi-
cation tree-based models can also improve risk stratification
relative to models generated using SVM. While we demon-
strated the utility of non-symmetric entropy-based classifica-

tion trees only for risk stratification for cardiovascular deaths
post-NSTEACS, we believe that it is useful for other clinical
applications. However, further investigation and research is
required to confirm this hypothesis.
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