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Abstract— In this paper, we present a complete and novel
workflow for quantitative nuclear feature analysis of glioblas-
toma using high-throughput whole-slide microscopy image
processing as it relates to treatment response and patient
survival. With a complete suite of computer algorithms, large
numbers of micro-anatomical structures, in this case nuclei, are
analyzed and represented efficiently from whole-slide digitized
images with numerical features. With regard to endpoints of
treatment response, the computerized analysis presents a better
discrimination than traditional neuropathologic review. As a
result, this analysis method shows potential to facilitate a better

understanding of disease progression and patients’ response to
therapy for glioblastoma.

I. INTRODUCTION

The term in silico broadly refers to those experiments

carried out on computers for simulation. The recent avail-

ability of high-throughput and high-resolution instruments

has given rise to large sets of imaging data (e.g. microscopy

imaging), clinical information (e.g. patient survival, response

to treatment, etc.) and molecular signatures, (e.g., genomics

and proteomics) that can be harnessed for biomedical re-

search. These datasets provide detailed, multi-dimensional

views of biological systems and functions. However, progress

on comprehensive analysis integrating multi-type and multi-

scale data lags behind the pace of data generation. As a

result, we initiated efforts to develop computerized analysis

tools that can facilitate hypothesis-driven, biomedical transla-

tional studies on human gliomas in the In-Silico Brain Tumor

Research Center (ISBTRC) [1].

Diffuse gliomas are the most common primary brain

tumors of the central nervous system. They are notorious

for rapid clinical progression and nearly uniform fatality [2].

Although a large number of research projects have focused

on this disease, understanding of the biological driving forces

and factors that underlie differential response to therapy

and survival remains limited [3]. In an effort to address

these issues, we initiated an integrated exploration of the

complementary, multi-modal data on glioblastomas (GBMs)

from cohorts of patients collected in large-scale efforts by

The Cancer Genome Atlas (TCGA) project [4]. Due to the

large data volume for analysis, traditional analysis by manual

labor is replaced with in silico experiments executed by high
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throughput computational infrastructure with specifically de-

signed analysis algorithms. This class of in silico studies,

referred to as multi-scale integrative investigations, aims to

measure and quantify biomedical phenomena in a way that

accounts for multiple biological, spatial, and in some cases

temporal scales.

In this paper, we describe an exploratory study on whether

phenotypic information from nuclear morphology in digital

microscopy images correlates with treatment responses or

survivals for patients with GBMs. We present our methodol-

ogy for 1) computation of quantitative features from nuclei in

whole-slide microscopy images with a parallel computational

infrastructure; 2) representation and classification of patient

slides using nuclear features; and 3) use of imaging features

for therapeutic response and survival. We demonstrate that

computerized analysis of nuclear features derived from imag-

ing data can discriminate groups with significant survival

differences in response to therapy that are not observed with

qualitative visual assessments by human reviewers.

II. IMAGE PROCESSING FOR NUCLEI

CHARACTERIZATION

A. Importance of Nuclear Analysis

Based on pathologic criteria of the World Health Orga-

nization (WHO), gliomas can be broadly categorized into

three classes: astrocytoma, oligodendroglioma, and mixed

oligoastrocytoma [5]. These tumors behave differently clin-

ically and are treated differently. Oligodendrogliomas and

oligoastrocytomas tend to grow more slowly and have longer

survivals, grade-for-grade, than astrocytomas. Nuclei of these

three classes have distinct characteristics that are relied upon

heavily for morphology-based classification. For example,

nuclei that are round in shape, small in size, have negligible

cell-to-cell variability and uniform nuclear texture are typical

of oligodendroglioma. By contrast, nuclei of astrocytoma

are elongated and irregular in shape with an uneven, rough

nuclear texture due to the clumping of chromatin. However,

many gliomas either contain mixtures of these nuclei or have

intermediate forms. Representative examples of astrocytic

and oligodendroglial nuclei, as well as those from the contin-

uum between the two extremes are presented in Fig. 1. Nuclei

with either variable combinations of oligodendroglioma and

astrocytoma components or with morphologically ambiguous

forms make the accurate and reproducible classification of

gliomas challenging. By providing tools to segment, describe

and classify nuclei, not only can we shed light on the

morphologic spectrum of the diffuse gliomas, but also better
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Fig. 1. The spectrum of nuclear features in glioma tumors is presented.
Between the pure oligodendroglial and astrocytic nuclei there exists a
spectrum of nuclei with mixed characteristics.

understand the correlative strength of phenotypic data with

response to therapy and patient survival.

To attain discriminating morphologic data on nuclei, we

developed a computerized analysis workflow for identifying,

characterizing, and classifying nuclei in microscopic images

of Haematoxylin and Eosin (H&E) stained gliomas. The

resulting nuclear analysis is then used for further correlation

with treatment response and patient survival. In Fig. 2, we

illustrate this analysis framework with its individual steps

discussed below in detail.

B. Parallel Image Processing

Each whole-slide image included in the TCGA dataset can

exceed 2GB in size. Due to large image size, data structures

and intermediate results computed during whole slide image

analysis may exceed available main memory on a machine.

Moreover, processing a large image slide on a single machine

can be slow. For these reasons, we partition each whole

slide image into non-overlapping regions to permit parallel

analysis. After careful study of hardware specifications and

image properties, we selected an appropriate region tile size

of 4096× 4096 pixels. Meanwhile, the spin-off of whole-

slide tiling makes it possible for us to leverage parallel

computation power to its full extent. We process images

on a high-performance computation infrastructure with a

cluster of computer nodes that is used for executing jobs

simultaneously. This infrastructure configuration currently

consists of seven Dell 1950 1U rack mount units. Each unit

is configured with Dual Xeon E5420 CPUs running with four

cores at 2.5Ghz for a total of eight cores per node.

C. Nuclei Detection

The first stage of nuclear analysis is the identification

and segmentation of all brain tumor nuclei present in digital

slides [6]. In an effort to solve issues mostly arising from

variations in image intensity, color, texture, and data scale,

we employ a method that accommodates the identification of

nuclei with distinct characteristics. The first module in this

method is the recognition of non-tissue and red blood cell

regions. The percentage of areas occupied either by blank

spaces or red blood cells is computed to determine whether

a given tile contains sufficient material for analysis. We then

apply mathematical morphology operations to the tile for

normalizing background regions degraded by artifacts aris-

ing from tissue preparation and the scanning process. This
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Fig. 2. The nuclei analysis schema, consisting of image tiling, segmenta-
tion, feature computation, and classification, is presented.

operation makes it possible to separate the foreground sub-

stantially from the normalized background with straightfor-

ward user-defined threshold mechanisms. Clumped nuclei are

subsequently segregated using the watershed technique [7].

Finally, detected objects not satisfying either area or shape

constraints are filtered out from the identified nuclei set,

making the resulting nuclei set more uniform.

D. Nuclei Characterization and Representation

A diverse, yet complementary set of nuclear features is

computed to characterize the segmented nuclei. Each indi-

vidual nucleus is described using features from four broad

categories: nuclear morphometry, region texture, intensity,

and gradient statistics. As nuclear morphology is informa-

tive for distinguishing astrocytic and oligodendroglial cell

differentiation, morphometric features such as the degree of

elongation, size, and regularity are included. Nuclear texture

information is also captured using multiple texture descrip-

tors, as there is significant variation in texture across nuclei

of distinct categories due to the clumping of chromatin. A

complete list of features is presented in [6]. Additionally,

we apply the same set of texture and gradient features to

neighboring areas surrounding nuclear regions and use these

features derived from “cytoplasm” regions to strengthen the

representation power.

E. Nuclei Classification

Since it is critical to capture the full spectrum of glioma

nuclei both within each tumor and from all disease types,

we classify by their feature descriptors with a 10-class

classification process. Since diffuse gliomas can be viewed as

mixtures of oligodrengroglioma, astrocytoma, and intermedi-

ate morphology elements with variable weights, we assigned

to each nucleus a score, i.e. a class label, defined as an

integer ranging from 1 to 10, with 1 representing a classic

oligodendroglioma and 10 a classic astrocytoma. The val-

ues in-between represent nuclei exhibiting nuclear features

across the oligodrengroglioma-astrocytoma continuum. Since

we define 10 different nuclear classes for recognition, it is

ideal when the regression analysis, in which a large body of

techniques closely tied to machine learning can be utilized

for nuclear score computation [8].

Regression analysis is typically used for exploring the

relationship between a dependent variable and a set of

independent variables [9]. Meanwhile, it is also widely used

for predicting a response variable from a set of explanatory

variables, given the regression function. In our study, the
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generalized linear regression function is used because of

the following: First, linear models are straightforward and

therefore appropriate for revealing the dominant patterns

between nuclear score and features. Second, linear models

are less subject to over-fitting problems than non-linear

ones, since they do not take into account the sensitive

effects of cross-terms. However, it is well known that linear

least-square estimates are heavily subject to either outliers

or heavy-tailed error distribution. Therefore, we use the

iteratively reweighted least-square criterion (IRLS) as the

remedy to mitigate the influence from outlier data [10]. With

this approach, we now aim to minimize the following cost

function:

E(β ) =
N

∑
i=1

f (yi − xT
i β ) (1)

where xi =
[
1 xi1 xi2 · · · xip

]
is a vector of predictors

from the i-th observation, yi is the response to xi, and β
is the set of p + 1 coefficients to be determined; f (·) is a

function that evaluates the contribution of each residual to

the overall cost function. In our study, we choose f (·) to

be the bi-square objective function, as the associated weight

function decreases sharply when residual departs off 0. The

final solution can be produced by an iterative computation

process described as follows:

β (i) =
(

XTW
(i−1)
B X

)−1

XTW
(i−1)
B Y (2)

where Y =
[
y1 y2 · · · yn

]T
is the response vector; WB is a

diagonal matrix determined by residuals that, in turn, depend

on the estimated parameters. Circularly, the parameters rely

on the weight functions. As a result, an iterative computation

process gradually yields a stabilized coefficient vector.

III. EXPERIMENTAL RESULTS

Our dataset is drawn from TCGA project on GBMs.

GBMs are considered to be grade IV astrocytic neoplasms,

but they may contain a variable degree of oligodendroglioma

as well. These GBMs have digitized pathology images with

a rich set of annotations generated by seven TCGA con-

sortium neuropatholgists. These annotations describe, among

many features, the degree of oligodendroglioma present as 0

(none), 1+ (present) or 2+ (abundant). All digitized slides

included in the dataset are the H&E stained sections of

GBMs that were formalin-fixed and paraffin-embedded. In

aggregate, more than 22 million neoplastic nuclei in 428

whole slides scanned at 20x magnification from 162 patients

were analyzed with the aforementioned image processing

pipeline. With the aforementioned computer cluster, the

execution time cost is less than 36 hours. A typical slide

region overlaid with analyzed nuclear boundaries and score

ranges is presented in Fig. 3.

In order to find the best set of feature descriptors for nu-

clear representation, an experienced neuropathologist assigns

nuclear scores to a set of nuclei selected in a way such that

they cover the entire oligo-astro spectrum. With this set of

scores, we begin the discovery of discriminating features by

Fig. 3. A typical image region is presented with overlaid nuclear boundaries
in blue, green and red, representing nuclear score intervals of [1∼3], [4∼6],
and [7∼10], respectively.

computing correlation of each feature and the score. The top

eight features exhibiting high correlation with the nuclear

score are selected as candidates for further selection. This

is followed by a greedy search on all possible combinations

of k features from this feature subset, where k = 1,2, . . . ,8.

This yields 255 distinct combinations of features to search

with. The best feature subset is identified by minimizing the

following cost function:

C =
N

∑
i=1

‖si − ŝi(ω)‖1 (3)

where ω is a set of selected features; N is the number of

nuclei with scores from the neuropathologist; s and ŝ are

the human-assigned and computer-estimated nuclear score,

respectively.

Using the best feature subset, we find the best linear

regression model with equation (2). With the best linear

regression model, we can compute the nuclear scores for all

nuclei identified in 428 slides, in turn. To follow the same

way TCGA glioma slides were visually classified by a panel

of seven TCGA certified neuropathologists in terms of the

degree of oligo-component present, we compute the ratio of

the number of oligo-nuclei (with nuclear score in [1∼3])

to that of astro-nuclei (with nuclear score [5∼10]) from

slides for each patient and cluster with k-means algorithm

the patient oligo-to-astro ratios into three oligo-component

clusters: namely, oligo-0, (i.e. lack of oligo-component),

oligo-1+, (i.e. intermediate level of oligo-component), and

oligo-2+, (i.e. abundant oligo-component). In Fig. 4 (a),

we present the resulting scatter plots and the heuristic

Gaussian probability density functions of the oligo-to-astro

ratios associated with 162 patients grouped by the three

oligo-component categories visually reviewed by the TCGA

neuropathologists. With oligo-0 and oligo-2+ populations,

the resulting p-value for the two-sample t-test is 7.78e− 3.

In Fig. 4 (b), populations of patients are categorized with

the oligo-component group labels from the unsupervised k-

means algorithm. With oligo-0 and oligo-2+ populations, the

resulting p-value for the two-sample t-test is 3.75e−7.

With these two different oligo-component classification

results, we further investigate the clinical significance of
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Fig. 4. Scatter plots and estimated Gaussian PDFs are presented with
oligo-astro ratios of patients classified as oligo-0 (blue), oligo-1 (red), and
oligo-2+ (green), by (a) TCGA neuropathologists; (b) K-means clustering
method.

the oligo-component by correlating with the response to

therapy and survivals. In Table 1, we present the p-values

of the Log-Rank test [11] with the patient survival data

of different oligo-component groups determined by 1) the

TCGA neuropathologists’ visual assessment, and 2) the

unsupervised clustering process on the oligo-to-astro ratios.

The result shown in Table I suggests that no Log-Rank

test yields statistical significance with the survival data.

Additionally, the p-values associated with human-reviewed

and algorithm-produced oligo-component groups are very

similar in most cases. In Table II, we summarize the p-

values of the Log-Rank test with the survival outcomes

of patients of different oligo-component groups that are

treated with different therapies, i.e. aggressive vs. normal.

It is noted that patients in oligo-0 group classified both by

neuropathologists’ visual assessments and by machine-based

clustering process present significant survival difference in

response to different therapies, while patients in oligo-2+

cluster show significance in neither case. When patients only

from either (oligo-1+) or (oligo-1+ and oligo-2+) group are

studied, computer-based analysis shows significantly favor-

able response to aggressive therapy as compared to standard

therapy. However, human-based grouping analysis fails to

present such a separation of treatment response to these

therapies. This finding suggests that the quantitative analysis

does present more discrimination power than its qualitative

counterpart. This is partly due to the fact that the quantita-

tive analysis can be easily scaled-up without contaminating

performance. As the training samples annotated by human

experts are limited when compared with the total number of

neoplastic nuclei in whole-slide images, human experts could

TABLE I

WE PRESENT P-VALUES OF LOG-RANK TEST WITH

SURVIVAL DATA FROM PATIENTS OF DIFFERENT

OLIGO-COMPONENT GROUPS DETERMINED BY HUMAN

VISUAL REVIEW AND K-MEANS CLUSTERING METHOD.

Oligo-Group Oligo-Group Visual Assessment Unsupervised Clustering

0 (1, 2) 2.55e−1 2.92e−1

1 (0, 2) 1.64e−1 2.41e−1

2 (0, 1) 4.61e−1 4.54e−1

0 1 1.80e−1 2.55e−1

0 2 4.57e−1 4.90e−1

1 2 2.09e−1 4.17e−1

TABLE II

WE PRESENT P-VALUES OF LOG-RANK TEST WITH

SURVIVAL DATA FROM PATIENTS RECEIVING DIFFERENT

TREATMENTS AND PRESENTING DIFFERENT

OLIGO-COMPONENTS DETERMINED BY HUMAN VISUAL

REVIEW AND K-MEANS CLUSTERING METHOD.

Oligo-Group Visual Assessment Unsupervised Clustering

0 5.40e−5 3.02e−3

1 2.79e−1 6.41e−3

2 6.06e−2 5.37e−2

(1, 2) 1.03e−1 1.24e−3

identify oligo-astro nuclei in the small training set with high

accuracy. However, neuropathologists’ performance could

be substantially devastated when the scope of analysis is

expanded to include all nuclei in whole-slide images. As

opposed to neuropathologists, the compute-based process is

not affected by the scale of the nuclear quantity. As a result,

it is not surprising to see the computerized analysis achieves

better discrimination power than neuropathologists, even

though it were neuropatholgists who provided the annotated

data with which computer-based algorithms were trained.

IV. CONCLUSIONS

This paper presents a correlative analysis of the degree

of oligo-component in GBMs with treatment response and

patient survival. As opposed to human visual reviewing

process for classifying gliomas, we used quantitative nuclear

features computed from imaging data with high-throughput

microscopy image processing executed on a parallel com-

putational infrastructure. In aggregate, more than 22 million

nuclei were analyzed by the computer algorithms and used

for oligo-component classification. When compared with a

panel of neuropathologists, the computerized analysis results

in better discrimination between GBMs with differing de-

grees of oligo-component, at least with regard to predicting

response to therapy. This suggests that the in silico analysis

method presented here is a promising approach to facilitate

a better understanding of glioma progression and patient

response to therapy.
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