
 

 

 

  

Abstract— Hemorrhagic shock is the cause of one third of 
deaths resulting from injury in the world. Early diagnosis of 
hemorrhagic shock makes it possible for physicians to treat 
patients successfully. The objective of this study was to select an 
optimal survival prediction model using physiological 
parameters from rats during our hemorrhagic experiment. 
These physiological parameters were used for the training and 
testing of survival prediction models using an artificial neural 
network (ANN) and support vector machine (SVM). To avoid 
over-fitting, we chose the optimal survival prediction model 
according to performance measured by a 5-fold cross validation 
method. We selected an ANN with three hidden neurons and one 
hidden layer and an SVM with Gaussian kernel function as a 
trained survival prediction model. For the ANN model, the 
sensitivity, specificity, and accuracy of survival prediction were 
97.8 ± 3.3 %, 96.3 ± 2.7 %, and 96.8 ± 1.7 %, respectively.  For 
the SVM model, the sensitivity, specificity, and accuracy were 
97.5 ± 2.9 %, 99.3 ± 1.1 %, and 98.5 ± 1.2 %, respectively. SVM 
was preferable to ANN for the survival prediction. 

I. INTRODUCTION 
CCORDING  to The World Health Organization (WHO) 
in 2010 [1], death resulting from injury accounts for 14% 

of overall deaths in the world, and the cause of one third of 
these deaths directly due to injury is hemorrhagic shock [2], 
[3]. In South Korea, it was reported that the cause of 74% of 
multiple trauma patients’ deaths in emergency rooms (ER) 
over the past eight years was hypovolemic shock [4]. 
Hemorrhagic shock is a clinical syndrome characterized by 
widespread inadequate oxygenation and supply of nutrients to 
the tissues and organs, resulting in cellular dysfunction [5], [6]. 
Failure of compensatory mechanisms in hemorrhagic shock 
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can lead to death. It is not difficult to diagnose complications 
when patients are already in a state of shock, because the 
homeostatic response to hemorrhage involves obvious 
changes in many cardiovascular and biochemical variables. 

On the other hand, the ability to rapidly and accurately 
triage and utilize appropriate interventions can be problematic 
in the early decision-making process of trauma care with 
insufficient information. An accurate diagnosis and treatment 
could be delayed because there are a few obvious symptoms. 
There have been many studies of early diagnosed patients with 
hemorrhagic shock through various hemodynamic indexes 
and blood tests [7], [8]. Also, statistical methods have recently 
been applied for prediction model of survival or mortality 
[9]-[11]. 

The aim of this study was to diagnose hemorrhagic shock in 
its early stage using various physiological parameters. Over 
the years, there have been several studies that suggested 
survival prediction models using an artificial neural network 
(ANN), logistic regression, and polynomial neural network 
(PNN) [10], [11]. However, most previous studies did not 
perform a validation process for model optimization. Thus, in 
this study, we constructed ANN and SVM models with 5-fold 
cross validation for selecting an optimal survival prediction 
model. Input parameters were heart rate (HR), systolic blood 
pressure (SBP), diastolic blood pressure (DBP), respiration 
rate (RR), and temperature (TEMP) from a hemorrhagic rat 
model. 

II. MATERIALS AND METHODS 

A. Data Acquisition 
Forty-five male Sprague-Dawley (S-D) rats were divided 

into three groups of each fifteen rats depending on the 
controlled blood volume loss. Three blood volumes of 2 
ml/100 g, 2.5 ml/100 g, and 3 ml/100 g were withdrawn over 
15 min for the three groups. HR, SBP, DBP, RR, and TEMP 
were measured as physiological parameters from the rats 
during the hemorrhagic experiment. We analyzed data for five 
min after “Bleeding end” (the shaded area) in Fig. 1. We 
selected this period because we simulated an emergency 
situation in which bleeding was treated. The five min data for 
each parameter were divided into five sets of data with one 
min averages. Thus, 225 (45 rats * 5 sets/rat) data sets were 
obtained in this study. When survival and death sets were 
determined 150 min after the start of the experiment, the 
numbers of survival and death sets were 95 and 130, 
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respectively. The 225 data sets were then divided into 150 
training sets and 75 testing sets as shown in Table I. 
 

 
Fig. 1.  Experimental protocol for rats with hemorrhagic shock. 
 

 
Since the physiological parameters were obtained from 

each rat having different scales of each parameter, the whole 
data sets were normalized between zero and one using (1) to 
effectively train survival prediction models. 
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In equation (1), i is 5, which is the number of input 

parameters consisting of HR, SBP, DBP, RR, and TEMP. The 
maxi and mini indicated maximum and minimum values of 
each physiological parameter in one min data. k is from one to 
five, meaning one min data length of total five min. We used 
MATLAB Version 7.6 (Mathworks Inc, Natick, USA) for 
analysis of ANN and SVM. 

B. Artificial neural networks (ANN) 
The architecture of the ANN in the study was based on a 

multi-layer perceptron which consisted of three layers: input, 
hidden, and output layers. Each layer of the network consisted 
of a number of elementary processing units called neurons 
[12]. 

In this study, the architecture of the ANN consisted of one 
input layer with five input neurons, one hidden layer with 
between two and ten hidden neurons, and one output layer 
with one output neuron as shown in Fig. 2(a). ANN with too 
few hidden neurons would be incapable of differentiating 
between complex patterns, leading only to a linear estimate of 
the actual trend.  In contrast, if the ANN model had too many 
hidden neurons, it would follow the noise in the data due to 
over-fitting, leading to poor generalization for untrained data 
[13]. To obtain the optimal number of neurons in the hidden 

layer, we tried to train between two and ten hidden neurons to 
obtain the optimal ANN model. The ANN algorithm was 
based on Levenberg-Marquartd back-propagation to rapidly 
find an optimal solution. 

C. Support vector machines (SVM) 
SVM is an alternative training method of various statistical 

classifier methods and neural networks. A SVM model maps 
data patterns in high dimensional space. The data are divided 
into two groups by the training data called support vector. An 
optimal SVM model is determined using the best separation 
by the hyper-plane that has the longest distance to the support 
vector. Fig. 2(b) shows that a kernel function is generally able 
to linearly separate data patterns. Thus, the goal of the support 
vector machine is to improve the accuracy of a model by 
separating space using a kernel function. This study 
investigated survival prediction models using kernel function 
of non-kernel, quadratic, polynomial, and Gaussian radial 
basis. 

 

 
Fig. 2.  Features in prediction models and their variables. Weight and hidden 
neurons factor of ANN (a), Kernel function factor of SVM (b). 
 

D. 5-fold cross validation and testing 
The k-fold cross validations that have been used in many 

studies are 10-fold or 5-fold cross validation. However, many 
studies didn’t reveal any statistical advantages of 10-fold 
cross validation over 5-fold cross validation [14]. Therefore, 
the 5-fold cross validation was used because of the insufficient 
training data sets in this study. The training data sets were 
divided randomly into five subsets without overlapping as 

TABLE I 
DISTRIBUTION OF ALL DATA DIVIDED INTO TRAINING SET AND TEST SET, 

SURVIVAL SET AND DEATH SET 

Group Training data 
 sets 

Testing data 
sets 

Total data  
sets 

Survival data sets 65 30 95 
Death data sets 85 45 130 
Total data sets 150 75 225 
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shown in Fig. 3. Four of the five subsets were used for training 
and the fifth subset was used for validation during training. 
The entire validation process was repeated an additional four 
times by rotating the remaining subsets to be used as the 
validation set. The accuracy of each prediction model was 
computed and averaged. To obtain an optimal prediction, the 
survival prediction model that had accuracy closest to average 
was selected [15]. The selected survival prediction model 
represented producing five prediction models during 5-fold 
cross validation. After the training process, the selected model 
was tested with the remaining testing data sets from the 
original total data sets. 
 

 
 
Fig. 3. Flowchart of determination for survival prediction model by 5-fold 
cross validation. 
 

We utilized the following parameters in evaluating the 
performance of the prediction models: sensitivity, specificity, 
and accuracy. 

 
)/( FNTPTPySensitivit +=            (2) 

 
)/( FPTNTNySpecificit +=            (3) 

 
)/()( FNFPTNTPTNTPAccuracy ++++=      (4) 

True positive (TP):  No. of survived rats correctly 
identified as surviving. 

True negative (TN): No. of dead rats correctly identified 
as dead. 

False positive (FP):  No. of dead rats incorrectly identified 
as surviving. 

False negative (FN): No. of survived rats incorrectly 
identified as dead. 

 
When the training was performed, ANN set initial weights 

randomly and made different models, which had different 
sensitivity, specificity, and accuracy. Thus, we made up for 
this characteristic by suggesting an optimal survival 
prediction model based on mean sensitivity, mean specificity, 
and mean accuracy. These were determined through 10 
repetitions with the ANN and SVM models. 

III. RESULT 
Tables II and III show the validation results of ANN and 

SVM models.  It was determined by 10 times repetitions using 
the ANN and SVM models with a 5-fold cross validation 
method. ANN with three hidden neurons showed 97.9 ± 4.5% 
sensitivity, 94.8 ± 2.0% specificity, and 96.3 ± 1.1% accuracy, 
which was the best result. The mean accuracy decreased along 
with the increasing number of hidden neurons.  

In Table III, SVM with Gaussian kernel function as trained 
survival prediction model resulted in 98.7 ± 2.7% sensitivity, 
97.8 ± 2.9% specificity, and 98.0 ± 1.7% accuracy, which was 
the best result among the kernel functions. SVM showed 
better accuracy than ANN because SVM converges into the 
global minima to train an optimal model, whereas ANN 
converges into the local minima to perform regional 
over-fitting. 

 

 

 

TABLE III 
VALIDATION RESULTS OF SVM MODEL WITH SEVERAL KERNEL FUNCTION 

(MEAN ± S.D.) 
Kernel 

function Sensitivity (%) Specificity (%) Accuracy (%)     
   

Non-kernel 99.1 ± 2.9 96.4 ± 3.2 97.7 ± 1.6      
Quadratic 98.3 ± 3.6 96.5 ± 4.1 97.3 ± 2.1      

Polynomial 98.4 ± 3.4 94.1 ± 2.9 95.7 ± 1.6      
Gaussian 98.7 ± 2.7 97.8 ± 2.9 98.0 ± 1.7      

 
 

TABLE II 
VALIDATION RESULTS OF ANN WITH HIDDEN NEURONS BETWEEN 2 AND 

10 (MEAN ± S.D.) 
Number of 

hidden 
neurons 

Sensitivity (%) Specificity (%) Accuracy (%)    
   

  
   

2 98.5 ± 3.2 93.1 ± 4.1 95.3 ± 2.3          
3 97.9 ± 4.5 94.8 ± 2.0 96.3 ± 1.1        
4 99.3 ± 2.1 90.1 ± 2.8 94.0 ± 1.4        
5 100.0 ± 0.0 91.0 ± 4.6 94.7 ± 2.8        
6 99.2 ± 2.6 90.6 ± 4.8 94.7 ± 1.7        
7 100.0 ± 0.0 89.2 ± 3.8 93.7 ± 2.5        
8 96.9 ± 5.4 89.8 ± 5.4 92.7 ± 3.4         
9 98.4 ± 3.4 86.6 ± 8.1 92.0 ± 3.6        

10 99.4 ± 2.0 86.8 ± 6.7 92.3 ± 3.9        
S.D. = standard deviation 
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Each selected model was evaluated for the test set (n=75) to 
compare its performance. Table IV presents mean and 
standard deviation of receiver operating characteristic-area 
under curve (ROC-AUC), sensitivity, specificity, and 
accuracy of the selected ANN and SVM models. Mean and 
S.D. of ROC-AUC of the ANN models with three hidden 
neurons and SVM model with Gaussian kernel function were 
0.97 ± 0.02 and 0.98 ± 0.01, respectively. For ANN, 97.8 ± 
3.3% sensitivity, 96.3 ± 2.7% specificity, and 96.8 ± 1.7% 
accuracy were obtained. For SVM, 97.5 ± 2.9% sensitivity, 
99.3 ± 1.1% specificity, and 98.5 ± 1.2% accuracy were 
obtained. Therefore, SVM was better than ANN in terms of 
ROC-AUC, specificity, and accuracy. 

 

 

IV. DISCUSSION AND CONCLUSION 
There have been many studies predicting survival animal 

studies with hemorrhagic shocks. However, most studies did 
not perform a validation process. Also because training group 
and testing group were classified randomly once, training 
group could be over fitted by biased training data. To make up 
for this shortcoming, we used 5-fold cross validation to 
evaluate survival prediction models for ANN and SVM. 
Consequently, we confirmed that a SVM model with 5-fold 
cross validation had excellent performance for survival 
prediction. ANN has a disadvantage of local minima when 
creating models. However, because the SVM model is based 
on the structural risk minimization, it can create a model 
which converged to a global minima. 

However, the survival prediction model suggested in this 
study would be difficult to apply to clinical situation because 
the model was obtained using data from the rats with 
controlled hemorrhagic shock. Therefore, further studies are 
warranted to suggest survival prediction models using data 
from a state of uncontrolled hemorrhagic shock for rats first, 
and then for humans. If further studies make it possible to 
predict the survival rate for patients with hemorrhagic shock, 
it would be useful to give preferential emergency treatment to 
patients who are more in danger. 
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TABLE IV 
SURVIVAL PREDICTION TESTING RESULTS BY SELECTED ANN AND 

SVM MODEL (MEAN ± S.D.) 

Model ANN 
3 hidden neurons 

SVM 
Gaussian radial basis 

ROC-AUC 0.97 ± 0.02 0.98 ± 0.01 
Sensitivity (%) 97.8 ± 3.3 97.5 ± 2.9 
Specificity (%) 96.3 ± 2.7 99.3 ± 1.1 
Accuracy (%) 96.8 ± 1.7 98.5 ± 1.2 

ROC-AUC = receiver operating characteristic – area under curve 
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