
  

  

Abstract— We present a method for detecting and studying 
neoplasia-specific functional and structural features through 
the combination of in vivo dynamic imaging, in silico modeling 
and global sensitivity analysis. We particularly present the case 
of cervical epithelium interacting with acetic acid solution, 
which is employed as an optical biomarker. The in vivo 
measured dynamic scattering characteristics are strongly 
correlated with the output of the biomarker’s pharmacokinetic 
model that we have developed. Model global sensitivity analysis 
has shown that the measured/modeled bio-optical processes can 
be used for probing, in vivo, the number of neoplastic layers, 
the extracellular pH, the intracellular buffering efficiency and 
the size of the extracellular space. 

I. INTRODUCTION 
HARMACOKINETC modeling of the uptake kinetics of 
optical biomarkers has been proven to be an 

indispensible tool for analyzing poly-parametric biological 
systems. Biology-inspired and physiology-based 
pharmacokinetic models have been extensively utilized in 
the design of in vitro experiments and in the analysis of 
system’s responses to optical and chemical excitations 
[1],[2]. The majority of related work has been directed 
towards experiments targeting mainly the identification of 
cellular and/or subcellular processes associated with 
biosignaling, tumor growth etc. [3],[4]. 

Optical biomarkers have also been used as contrast agents 
for assisting the localization of abnormalities and for guiding 
biopsy sampling. Attempting to improve the diagnostic 
performance of the relevant in vivo diagnostic tests, Balas et 
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al. developed a method and device for measuring and 
mapping the dynamic optical signals, generated during the 
biomarker-tissue interaction [5]-[7]. Particularly, by 
employing acetic acid (AA) dilute solution as a biomarker, 
the method was applied for the in vivo, non-invasive 
detection, identification and mapping of epithelial neoplasias 
of cervix, larynx and skin  [8],[9]. In two large clinical trials, 
conducted in Europe and enrolling hundreds of patients, the 
method was proven to be very efficient, demonstrating an 
improvement of more than 63% in the diagnostic sensitivity 
over established methods [10],[11]. These findings indicate 
that the method has an evident clinical potential in non-
invasive diagnosis of epithelial neoplasia. However, 
empirical/phenomenological comparison of dynamic optical 
data with histological results is not informative on the actual 
functional and structural alterations that are associated with 
the neoplasia growth. Assessment of all these biological 
factors can, in principle, be achieved through the 
combination of the in vivo measurement and mapping of the 
generated dynamic scattering signals and the modeling of 
the biomarker pharmacokinetics. To this end, we have 
identified a long list of biological parameters that are 
determining the AA pharmacokinetics and are correlated 
with the neoplasia growth [12]. A very important step 
forward is to elucidate whether these parameters can be 
probed through the macroscopically measured dynamic 
optical signals and particularly to identify a subset of these 
parameters, which are the most influential to the signals’ line 
shapes. This is very essential since valuable knowledge will 
be gained on how functional and structural biological factors 
are independently or in combination altering during the 
neoplasia growth. This would be proved very useful in the 
better understanding of the biophysical mechanisms 
involved in neoplasia growth, by examining live epithelial 
tissue. Apart from that, the in vivo assessment of the 
structural and particularly the functional status of the tissue 
is expected to provide additional and valuable diagnostic 
information. This is because, in current practices, diagnosis 
and grading is based on the histological assessment of the 
structural changes, solely, in dead tissue biopsy samples.  To 
stress this point further it is worth emphasizing that there is 
no established method for assessing functional 
characteristics in living epithelial tissues.  

These challenges have motivated our work that is hosted 
in this paper. Hence, we present here, for the first time, 
results from the Global Sensitivity Analysis (GSA) of a 
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computational model that we have developed by formulating 
the bio-optical processes in neoplastic epithelium of the 
cervix.  

II. MATERIALS AND METHODS 

A. Generation of bio-optical signals 
Optical biomarkers or contrast agents employed in 

molecular imaging have the unique property of generating 
measurable dynamic optical signals when they interact with 
biomolecular targets and processes of diagnostic importance. 
In live cell or tissue imaging the dynamics of the target’s 
optical activation is regulated by the uptake kinetics of the 
biomarker. This implies that the quantitative monitoring and 
modeling of the generated dynamic optical signal can be 
used for assessing the biomarker’s uptake kinetics, which 
can, in turn, provide valuable information for both functional 
and structural characteristics and for the associated 
abnormalities. A basic prerequisite for achieving this is to 
establish a pharmacokinetic model that accounts for all 
tissue structural characteristics and also for all biomarker 
transport phenomena in the living tissue. The second step is 
to fit the experimental data with the model’s output 
characteristics and estimate tissue structural and functional 
characteristics by attempting to solve the inverse problem. 
On such grounds, we have established a pharmacokinetic 
model that describes the epithelial metabolic and transport 
pathways that are followed by dilute AA solution when it is 
topically applied to epithelial tissue [12]. 

Generally speaking, the cells that inhabit tumorigenic 
areas are capable of maintaining their cytoplasmic pH 
normal, at the expense of extracellular acidosis. The elevated 
acidity of the extracellular space (ES) of neoplastic layers 
causes AA molecules to remain largely undissociated. As 
such, they can passively penetrate the cell membrane of the 
neoplastic cells, with high selectivity. At the same time, the 
pH of the intracellular space (IS) is almost neutral, which 
results in the subsequent disassociation of the AA to 
hydrogen (H+) and acetate (Ac-) ions. Excess H+ ions 
provoke conformational changes in nuclear proteins, which, 
in turn, results in local variations of the index of refraction 
of the nucleus. These index variations are changing the 
scattering characteristics of the tissue, converting the 
epithelium from transparent to an opaque, highly scattering 
medium, thus generating the in vivo measurable dynamic 
optical signal. At the same time, and in order to disseminate 
the imposed ionic load, the cell dynamically employs several 
short and long-term mechanisms such as physicochemical 
buffering and active proton extrusion and the phenomenon is 
transiently reversed. In addition, and because the cervical 
epithelium is stratified, AA also diffuses along the tissue 
cross-section through the tight junctions.  These processes 
are repeated in the underlying neoplastic epithelial layers, 
increasing the number of diffusely reflected photons. 
Finally, AA is gradually consumed or drained into the 
stroma and the tissue restores its original optical properties. 

B. Modeling of bio-optical processes 
Epithelial tissues appear in either monolayer or multilayer 

cell formations that, from a structural perspective, tend to 
homogenize during neoplasia development. As such, and 
based on the previous analysis, the developed model 
partitions the dysplastic proportion of the cervical epithelium 
into a stack of abnormal cell layers, which is delimited by a 
reservoir layer from above i.e. a repository that supplies the 
biomarker. Each cell layer is assumed to be a duplex entity 
of independent, well-stirred and kinetically homogeneous 
compartments, namely: an extracellular (ES) and an 
intracellular (IS) one. Diffusion between compartments and 
layers is realized by the passive trans-membrane transport of 
AA molecules and ions and by their paracellular flux 
through the tight junctions, respectively. Naturally then, 
model equations were developed considering the diffusion 
fluxes of non-ionic and ionic species, through these 
pathways, down to concentration and potential gradients and 
according to the Fick’s Law and the Goldman-Hodgkin-Katz 
constant field equation, respectively [13],[14]. These are: 
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where C represents the concentration time derivative, TA 
denotes the total AA concentration in both ionized and 
unionized form, i the ith neoplastic layer (i=1,2,...,N), a and b 
are the linear dimensions of the IS and of the ES, where 
cubic and rectangular compartment geometries have been 
assumed, Jm and Jp denote the passive and active 
transmembrane fluxes between the ES and IS, respectively, 
β is the buffering power, q and w account for the AA's 
dynamic ionization constants, including its self-burning 
effect, K is a parameter that expresses the geometrical 
dimensions (length) of the tight junctions and JT is the total 
paracellular flux that corresponds to the difference between 
the incoming and outgoing molecular fluxes between 
consecutive layers through the tight junctions. Here, we have 
to note that, for the reservoir layer (3) and (4) are abolished 
and for the last layer the outgoing paracellular flux is 
replaced by the KvC term, where KV is the kinetic rate at the 
tissue boundary between the epithelium and the stroma and 
C denotes the concentration of TA or AA in the layer. A 
mixed-integer, nonlinear algorithm is created that is solved 
numerically using MatlabTM, with the purpose of providing, 
as model’s output the intracellular AA and H+ concentrations 
vs. time functions in both the IS and the ES. Table I 
summarizes nominal values and value ranges of the 
variables that comprise the model’s input. 
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C. Global Sensitivity Analysis 
It has become evident from previous analysis that the 

temporal characteristics of the emitted scattering signal are 
determined by the H+ concentration dynamics in the total IS 
of the entire epithelium. Going one step further, we 
reasonably expect that the normalized concentration versus 
time predictions of the model will fit the normalized 
experimental dynamic scattering signals. For this reason, we 
employed global sensitivity analysis (GSA) with the purpose 
of identifying those neoplasia-specific biological features 
that are key determinants of the dynamic optical signal’s 
characteristics.  

Generally, GSA requires no a priori knowledge of an 
input/output relationship and/or model additivity. With GSA 
the model’s output uncertainty is apportioned, quantitatively, 
to the input parameter variations that are causing this 
uncertainty treating each input parameter as a random 
variable that follows a distribution from which data are 
randomly sampled. On such basis, variance-based methods 
provide robust statistical inferences in condensed format, by 
decomposing the output variance V(Y) into terms of 
increasing dimensionality: 

( ) 1,2,...,k
1

Y ...
N

i ij ijk
i i j i j k

V V V V V
=

= + + + +∑ ∑∑ ∑∑∑ , (5) 

where, given a k-dimensional input space, Vij…k captures the 
output variance, due to a single factor or by interaction of 
multiple ones (Vi=V(E(Y|Xi), Vij= V(E(Y|Xi,Xj))−Vi−Vj and 
so on). A single index term (Vi) designates the main effect of 
factor Xi to the output Y and the measure Si=Vi/V(Y) is 
called the first-order sensitivity effect of Xi on Y and 
defines, quantitatively, the contribution of the factor Xi to 
the output variance, alone. A sensitivity measure that 
accounts for the interaction between input factors is the total 
order sensitivity index. It sums up the overall influence of a 
factor Xi on the output variance: STi=Si+Sij+…+Sij..k, where 
i< j <…<k. If small, it implies that the influence is nominal 
and, hence, ascertains which of the factors have no effect on 
the output variance.  

We calculate the sensitivity indices by employing 
improved Sobol’s method. The method considers the 
variances in (5) as multidimensional integrals and estimates 
the later using a quasi-Monte Carlo algorithm [15]. 

Calculations assume that the probability distributions of both 
discrete and continuous input parameters to be uniform. This 
quasi-Monte Carlo algorithm was implemented and executed 
to Mathwork’s MatlabTM environment and thirty thousand 
parameter sets were used for estimating the first and total 
order sensitivity indices. Since the bio-optical processes 
under investigation are dynamic in nature, we have 
calculated these indices, for all model input variables, as a 
function of the time lapsed after the application of the 
biomarker.  The median was used as a metric for the overall 
ranking of the input variables for the purpose of identifying 
the key biological factors determining the model’s output 
and the line shapes of the dynamic optical signals. 

D. Experimental Data 
The experimental data were used for a preliminary 

validation of the model and of GSA predictions. These data 
were obtained from the cervical epithelium of women 
referred to routine colposcopic examination. A video camera 
was attached to the colposcope, which is an instrument 
providing magnified view of the cervix. A set of images 
were taken in time sequence after the topical application of 
3% AA dilute solution and for 4 minutes. One additional 
image was captured depicting the cervical tissue points from 
which biopsy samples were taken. The video stream was 
post-processed for image registration and for calculating the 
diffuse reflectance (DR) vs. time curves, at the points from 
where the biopsy was taken, using the green channel 
registered snapshots. This enabled the correlation of the 
dynamic DR (DDR) profiles, which depict the AA-provoked 
temporal changes in the back-scattering characteristics of the 
cervix, with the histological grading of cervical 
intraepithelial neoplasia (CIN). In total, 30 DDR curves 
were used in this study, corresponding to 10 CIN I (low 
grade) and 20 CIN II, III (high grade) cervical neoplasias 
(biopsy confirmed). 

III. RESULTS AND DISCUSSION 
Fig. 1 illustrates the first order (dark gray) and the total 

order (light gray) sensitivity index estimates in (first order) 
descending sequence for all model input parameters.  Due to 
the dynamic nature of the bio-optical phenomena under 
analysis, the sensitivity indices have been found to be time-
dependent. For this reason and for the purpose of obtaining 
an overall ranking of the model’s output sensitivities to input 
variables, the vertical axis values refer to the median of the 
time-dependent sensitivity values.  As it can be seen the 
parameters that are highly ranked are the number of 
neoplastic layers (N), the size of the ES (b) the pHES and the 
intracellular buffering (βIS).  The total index values for 
parameters pHIS, a, βES, K and KV were found to be smaller 
than 6.5%, indicating a fairly negligible influence of these 
parameters to the model’s output. Therefore, without 
significant losses in accuracy, they can be kept constant at 
around their nominal values. This finding indicates that the 
dimensionality of the problem can be reduced, facilitating 

TABLE I 

Parameter Value Unit Reference 

a  10-20 μm [16] 
b  0.1-0.8 μm [16] 

KV  10-6-10-7 M/s [19] 
βES  10-30 mM [21] 
βIS  10-50 mM [22] 
N 1-12 - [16] 

pHES 6-7 - [20] 
pHIS 7-7.4 - [20] 
K-1  0.01-1 μm [23] 

The biological parameter value ranges used as model inputs. These are 
functional and structural features which have been shown to change 
during neoplasia growth. 
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the estimation of the most important subset of parameters. 
Parameters N and b are structural parameters that are known 
to be very closely correlated with the neoplasia growth. 
Particularly, it has been established that the number of 
neoplastic layers and the extracellular space are increasing 
with the neoplasia growth [16]. In fact these are the key 
parameters onto which the routine histological grading of 
tissue biopsies is based and therefore their diagnostic value 
is high and well established. The diagnostic/predictive 
importance of the pHES parameter has only recently been 
indentified and appreciated. According to the so-called 
“acid-mediated tumor invasion model”, there is a strong link 
of the reduced pHES with the ability of tumor cells to form 
invasive cancers [17]. Particularly, it has been shown 
experimentally that H+ flow to peritumoral normal tissue 
provokes normal cell necrosis or apoptosis and extracellular 
matrix degradation. Tumor cells develop resistance to acid-
induced toxicity during carcinogenesis, which permits them 
to invade the damaged normal tissue. Finally, the high 
ranking of the intracellular buffering power (βIS) suggests its 
active role to the H+ concentration dynamics. This is valid 
since the rapid physico-chemical processes that are lumped 
in this parameter are the cell’s dominant suppressors of the 
acute increase in intracellular protons (H+), during the AA 
tissue diffusion [18]. Both pHES and βIS are functional 
parameters and cannot be accessed in dead tissue (biopsy) 
samples. The fact that these two functional parameters, 
together with the aforementioned structural ones, are the key 
determinants of measured/modeled dynamic optical 
characteristics indicate that they can be estimated 
concurrently and for every spatial point through non 
invasive optical measurements. This can be done, in 
principle, through the solution of the inverse problem, but 
this issue lies outside the scope of this study comprising a 
subject of our ongoing research. 

Fig. 2 illustrates the total sensitivity values of the most 
influential parameters as a function of time. Fig. 3 illustrates 
the 30 DR vs. time experimental curves, 10 corresponding to 
CIN I (low grade) and 20 CIN II and III (high grade). It can 
be clearly seen, by comparing these two figures, that there is 
a different relative contribution of each parameter to the 
various time points of the DR vs time curves. The part until 
the first 20 s of these curves is mainly affected by the 
parameter βIS and to a lesser extent by the extracellular space 
(b). The number of neoplastic layers N seems to be the key 
determinant of the peak DR vs. time values. The same 
applies for the pHES values but for the endpoint values of the 
experimental curves. From these observations we can 
conclude that the parameters in discussion are significantly 
entangled together in almost all the experimental data points 
and therefore the simple solution of estimating them from 
slopes or peak values of the experimental curves cannot be a 
reasonable choice.  We are currently working on the 
separated calculation of these parameters using global 
optimization approaches. As a preliminary attempt to 
validate the findings of GSA we use the curves illustrated in 

fig. 2 and the information from [16], which correlates CIN 
grade and the number of neoplastic epithelial cell layers. The 
number of dysplastic layers are 1-4 for CIN I, 5-8 for CIN II 
and greater than 9 for CIN III. We validate GSA findings 
against N since this is the only parameter that can be 
assessed in a semi-quantitative manner in biopsy samples 
during routine histological analysis. At the time at which the 
N number total order sensitivity (142 s) peaks the median 

 
Fig. 1.  The first order (dark gray) and the total order (light gray) 
sensitivity index estimates in (first order) descending sequence for all 
model input parameters The total sensitivity has been drawn together 
in order to depict the significance of parameter interactions to the 
output’s uncertainty.  
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Fig. 2.  The time dependence of the total sensitivity values of the 
model parameters that are the key determinants of the experimental 
data/model output characteristics.
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Fig. 3.  Diffuse reflectance (DR) versus time experimental curves 
obtained from cervical tissues after the application of 3% acetic acid 
solution. Black curves correspond to CIN I lesions, dark gray to CIN 
II and light gray to CIN III.
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DR for each CIN class is calculated. For the purpose of a 
rough estimation of the validity of GSA estimations, we 
consider  a change from 1 to 10 in the number of layers 
(from CINI-CINIII) were we measure a 27% change in DR 
at t=142 s. This is a significant change within the range of 
values predicted by GSA. These findings suggest strongly 
that there is indeed a correspondence between theoretical 
predictions and experimental data. 

IV. CONCLUSION 
We have combined in vivo dynamic imaging, in silico 

modeling and GSA for the detection and study of epithelial 
neoplasia. We have shown for the first time that the curve 
profiles of dynamic backscattering signals, that are measured 
in vivo, are mainly determined by two structural and two 
functional parameters. This finding implies that the 
dimensionality of the problem can be reduced remarkably, 
which facilitates the solution of the inverse problem: the 
concurrent estimation of all these parameters from in vivo 
measurements and for every spatial point. This achievement 
holds the promise to provide new insights in the study of 
epithelial neoplasia and novel non invasive diagnostic 
methods and devices, both contributing to cancer prevention. 
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