
 

 

 

 

Abstract—The aim of the paper is to identify the key 
physiological variables and ventilator settings involved in 
ventilation management, and required for an appropriate 
Clinical Decision Support System (CDSS). Based on the results 
of a questionnaire designed for the purpose of the research, 70 
hours of physiological and ventilation data were recorded. 
Recorded data were classified by clinicians into three major 
lung pathologies and were further statistically analyzed for 
identifying strong relationships between monitored and 
controlled ventilator parameters. Correlation analysis was 
evaluated by Intensive Care Unit (ICU) clinicians. Based on the 
evaluators’ majority voting the number and type of participating 
variables in a CDSS was drastically decreased. The number and 
type of monitored variables ranged from a single one to six, 
depending on the patient’s lung pathology, and the controlled 
ventilator setting. Evaluation results were successfully applied 
to Neural Network models for providing suggestions on Tidal 
Volume and the Fraction of inspired Oxygen. 

I. INTRODUCTION 
echanical ventilation support is provided to ICU 

patients in critical condition, who are unable to 
maintain adequate gas exchange. ICU Clinicians 
continuously monitor and evaluate cardio-respiratory 
related physiological variables, in order to evaluate 
adequacy of mechanical ventilation. This ongoing process is 
known as ventilation management. 

The strategy of applying changes on drug administration 
and ventilation settings could be based first on medical 
expertise and experience, secondly, on appropriate available 
guidelines and protocols, or, finally, on a combination of 
both.  

The need of protocols and guidelines is due to the 
multifarious nature of the ventilation management process. 
Carson et al [1] focuses on the need of converting measured 
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data into information for clinicians. Since humans have 
limited ability to estimate covariance between multiple 
variables [2], support tools are necessary.  

A different strategy is suggested according to patient 
pathology. Although protocols and guidelines have been 
developed, there are diverse methodologies for dealing with 
the problem [3] – [5].  

Automating the ventilation management process has been 
the ‘holy grail’ of research in the field. The driving forces 
for supporting ventilation decisions are the patients’ safety, 
the improvement and measurement of the quality of care, 
and the resources limitations. Background information on 
historical and recent approaches on intelligent and expert 
systems on ventilation management could be found in a 
survey published by the authors [6]. 

II. AIMS & METHODS 
The present paper aims to identify the key variables of 

the ventilation management process and employ them into a 
Neural Network (NN) model for providing suggestions on 
ventilator settings. The project aims adult ICU patients 
ventilated in control mode. 

The number and types of participating variables in a 
CDSS establish the basic architecture of the system. 
Simplification of the basic architecture is important in order 
to make the system comprehensive and efficient. However 
oversimplification may result into suboptimal architectures 
for the task. Since ventilation strategies adapt to lung 
pathologies, the proposed basic architectures are pathology 
specific. 

The identification of significant variables in ventilation 
management was performed into four steps: 

Step 1: The first step was the ranking of physiological 
variables and ventilator settings based on their relative 
significance in the process of ventilation management, 
according to ICU medical staff. For this purpose a 
questionnaire was developed and circulated to ICUs doctors 
of three General Hospitals (GH) in Athens (Greece) urban 
area; namely Konstantopouleio Complex in Nea Ionia GH, 
Thriasio GH and Nikaia GH. 

The questionnaire was designed to identify the relative 
significance of cardio-respiratory physiological variables 
and ventilator settings in the process of ventilation 
management of adult patients, ventilated in control mode. 
Five groups of ventilation related parameters have been 
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identified with the assistance of the ICU clinician personnel 
of Konstantopouleio GH.  

Parameters were grouped according to the acquisition 
methodology, and the physiology principle they describe 
(Table I, parameter groups: lines 5 – 9, Noninvasive 
parameters: lines 10 – 14, Volume, pressure parameters: 
lines 15 – 19, Lung mechanics: lines 20 – 22, Blood gases: 
lines 23 – 29, Hemodynamic parameters: lines 30 - 35).  

The questionnaire was designed with closed questions, 
using an analog rating scale from 0 to 10. In total 26 
physiological variables and 10 ventilator settings (Table I, 
lines 36 - 45) have been include in the questionnaire. 
Parameters that were ranked high by ICU clinicians were 
candidates for the recording process. 

Step 2: The second step was the recording of real patient 
data, as identified by the first step. Two hospitals were 
chosen for the data collection process, based on availability 
of digital communication interfaces, namely the University 
Hospital of Heraklion (PAGNH), Crete and Veterans 
Hospital of Athens (NIMITS). For the collection of patient 
physiology data, the ethics committee of the PAGNH 
Hospital granted the approval. Monitor and ventilator data 
were automatically collected, while blood gases were 
manual recorded from the patients’ charts. Approximately 
70 hours of patient data were collected. Two databases were 
developed. The first included all recordings at 5 minute 
sample rate, while the second included only the recordings 
at the time that the clinician was applying changes on 
ventilator settings. Three patients with Chronic Obstructive 
Pulmonary Disease (COPD), three patients with Acute Lung 
Injury – Acute Respiratory Distress Syndrome (ALI-ARDS) 
and two Normal lungs patients were recorded; recordings 
were performed approximately for 43, 16 and 11 hours 
respectively.  

Step 3: In order to identify the strength of relationship 
between inputs (monitored physiological variables) and 
outputs (ventilator settings), correlation analysis and 
statistical significant tests on the analysis (p<0.05) were 
performed.  

Step 4: Three ICU doctors evaluated the correlation 
coefficients. Based on a voting process the variables 
participated in the model when the majority of evaluators 
accepted the correlation. 

Evaluators’ (E) results were used for establishing the 
basic architecture of a NN model in terms of input and 
output variables. Two feed-forward back propagation 
Neural Network (NN) models were designed. The first NN 
was designed for providing suggestions on VT and the 
second for providing suggestions on FiO2 ventilator settings 
for COPD patients. The NN was trained with 60% 
(randomly allocated) of the available data sets. Models’ 
evaluation was performed against the clinical decisions 
(40% of the training set). The measure of performance was 

the root mean square error (rmse) between model’s 
suggestions and clinical decisions. 

TABLE I 
QUESTIONNAIRE PARAMETERS SCORING (IN BOLD: PARAMETERS CHOSEN AS 

CANDIDATES FOR THE MODELS) 
No Questionnaire Parameters AVG Mdn SD 
1 Age 6,11 7,00 3,16 
2 Weight 8,83 10,0 1,98 
3 Height 7,44 8,00 2,59 
4 Sex 4,94 5,00 3,62 
5 Non Invasive group 8,28 9,00 1,99 
6 Volume Flow Pressure group 8,89 10,0 1,57 
7 Lung mechanics group 8,61 9,00 1,54 
8 Blood gases group 9,72 10,0 0,67 
9 Hemodynamic group 7,72 8,00 1,71 
10 Arterial Oxygen Saturation SaO2 9,56 10,0 1,15 
11 End Tidal Capnography ETCO2 7,17 7,50 2,31 
12 Heart Rate HR 7,61 8,50 2,55 
13 Core Temperature 5,89 6,00 3,07 
14 Extremes Temperature 3,39 3,00 3,03 
15 Expired Volume Ve 8,94 10,0 1,63 
16 Mean airway pressure PMEAN 8,28 8,00 1,93 
17 Peak Inspiratory Pressure PIP 9,28 10,0 1,02 
18 End-Inspiratory Pause Pressure  

PPLATEAU 
9,72 10,0 0,67 

19 Intrinsic PEEP Auto PEEP 4,44 1,50 4,83 
20 Lung Compliance C 8,89 10,0 1,68 
21 Airway Resistance R 8,78 9,00 1,35 
22 Work of breathing  WOB 8,17 8,50 2,07 
23 Partial Pressure of Oxygen in 

Arterial blood PaO2 
9,50 10,0 1,15 

24 Partial Pressure of Carbon Dioxide 
in Arterial blood PaCO2 

9,56 10,0 1,15 

25 Hydrogen Ions Concentration in 
blood pH 

9,06 9,50 1,35 

26 Concentration of H2CO3 in blood 
HCO3 

8,33 9,00 1,71 

27 Oxygen Saturation of Central Vein 
blood SVCO2 

6,17 7,00 2,31 

28 O2 Oxygen in Venous blood PvO2 5,78 6,00 2,56 
29 Partial Pressure of CO2 in Venous 

blood PVCO2 
4,72 5,00 2,67 

30 Cardiac Output  C.O. 7,22 7,00 2,02 
31 Oxygenation Index  OI 8,83 10,0 2,07 
32 Mean airway Pressure ΜPAP 6,28 6,50 2,76 
33 Variation of Syst. Arterial Pressure 7,06 7,50 2,29 
34 Central Venous Pressure CVP 6,67 7,00 2,83 
35 Pulmonary Capillaries Wedge 

Pressure PCWP 
6,67 7,00 2,93 

36 Minute Ventilation VE 9,44 10,0 1,25 
37 Tidal Volume VT 9,44 10,0 1,15 
38 Respiration Rate RR 9,17 10,0 1,72 
39 Positive End Expiratory Pressure 

PEEP 
9,11 10,0 1,75 

40 Fractional Inspired Oxygen FiO2 9,56 10,0 1,04 
41 Maximum allowed airway Pressure 

P max 
9,50 10,0 0,71 

42 Inspiration Time / Expiration Time 
I/E 

8,00 9,00 2,70 

43 Maximum Inspiratory Flow Peak 
Flow 

8,17 9,00 2,46 

44 Inspiratory Pause 3,39 0,00 4,02 
45 Inspiration Flow Pattern 8,00 9,00 2,70 

III. RESULTS 
The questionnaire was circulated among three ICUs in 

Athens Greece, and it was answered by eighteen (18) 
doctors with a mean working experience in the ICU of 8.5 
years. 
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Responses were statistically analyzed in terms of average 
(AVG), median (Mdn) and Standard Deviation (SD). The 
final selection of variables was based on those ones that 
exhibit the highest average and median score. Based on 
group scores, eleven (11) variables were included (Table I, 
parameters described in lines 10, 12, 15, 17, 18, 20, 21, 23, 
24, 25, 26, 31), as well as one calculated variable; namely 
the oxygenation index (OI= FiO2/ PaO2).  

The groups with the higher scores contributed with more 
variables to our model. This approach resulted in utilizing 
four variables from the blood gases group, three from the 
volume-pressure group, two from the lung mechanics group 
and two from the non-invasively acquired variables group.  

The decaying number of variables reflects the group’s 
importance to the ventilation management process. 
Hemodynamic blood pressure variables were excluded based 
on their low scoring and on the need of catheterization prior 
to monitoring, which is not always available or applied. 

Six output ventilator settings were chosen, based on their 
scoring as system’s outputs (Table I, lines 37 – 41 and 43). 
Although minute ventilation (VE) scored very high it was 
excluded from the development process since in control 
ventilation mode its value is equal to the product of tidal 
volume multiplied by the respiration rate. Similarly flow 
pattern setting (Flow Pattern) was excluded on the ground 
that is not available in all commercial ventilator equipment.  

The reduction of the number of ventilation related 
variables simplified the recording phase and reduced the 
complexity of the problem.  

Correlation (r) and significance tests were performed on 
the recorded data, between monitored physiological 
variables and ventilator settings. The analysis was 
performed separately for each lung’s pathology. Table II 
presents the average correlation analysis results (r), for 
COPD, ALI-ARDS and physiological (normal) lung 
categories. Average correlation is the average value derived 
from the two databases (5 minute and applied changes 
database). Correlation between two variables is accepted 
when it is above a set threshold (0.5) in one of the two 
databases, P value is bellow or equal to 0.05 and it is 
accepted by the majority of the evaluators.  In Table II, 
fields which are blank do not satisfy the correlation criteria. 

Evaluators’ voting process rejected 28%, 29% and 31% 
of correlation coefficients for the Normal, COPD and ALI-
ARDS category respectively. Although some of the rejected 
relationships are easily justified, since there is no apparent 
cause and effect relationship (e.g. COPD FiO2 correlation 
with R and PIP), this is not true for other since there is a 
documented relationship (e.g. P max and PPLATEAU in COPD 
category). 

Based on evaluators’ results (Table II), CDSSs for two 
ventilator settings were developed. Two NN models were 
designed and trained for producing advice on VT and FiO2 

settings for COPD patients. The NNs are feed-forward back 
propagation network with one hidden layer. The number of 
nodes in the input layer is equal to the number of input 
variables [7]. According to Table II, the COPD VT NN 
model utilized as input variables the SpO2, OI, PIP, P 

PLATEAU and R, while the FiO2 NN utilized SpO2 and OI 
variables. Similarly the number of nodes for the output layer 
is equal to the number of the output variables; this number 
is equal to one (1). The number of nodes in the hidden 
layers satisfies Kolmogorov’s theorem [7], [8] and is less 
than the available data sets. The NNs were trained for 1000 
epochs with normalized data. 

VT NN performed with a rmse of 0.12 ml/Kgr, while FiO2 
NN performed with 0.02 rmse (approximately 2% error in 
inspired O2 concentration). A high percentage of models’ 
suggestions followed closely clinical decisions; 98.1% of VT 
NN and 95.2% of FiO2 NN suggestions exhibited less than 
10% deviation from clinical decisions.  

 

 
Fig. 1.  Scatter diagrams, NN suggestions vs. clinical decisions; top FiO2 NN 
model, bottom VT NN model (ml/Kgr) 

IV. CONCLUSION 
We approached the complex problem of identifying 

significant variables in ventilation management CDSSs 
based on statistical analysis of real patients data and 
evaluation of findings from clinical experts. The proposed 
approach minimizes the bias introduced by experts into the 
design of CDSSs with the assistance of statistical tools.  

Since the process of ventilation management is pathology 
specific, the above process was applied to three major lung 
pathologies encountered in the ICU setting; namely COPD, 
ALI-ARDS and normal lungs.  

Application of evaluation findings to the development of 
NNs models for supporting ventilation management has 
shown promising results. NN Models were shown to 
efficiently map the relationship between input variables and 
ventilator setting, as described by the evaluation process. 
However the application of NNs for the task has drawbacks. 
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The most important drawback is the transparency of the 
final architecture of the NN. Since NNs are black boxes to 
end users, a secondary operation of rule extraction is needed 
for identifying NN response to uncharted areas by the 
available data sets. Since NNs response is unknown, 
safeguarding algorithms should be in place prior to the 
application. 
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TABLE II 
CORRELATION COEFFICIENTS AND EVALUATOR’S VOTING RESULTS FOR LUNG CATEGORIES (IN BOLD ACCEPTED CORRELATION BY EVALUATORS) 

 VT (ml/kgr) RR  PEEP FiO2 Max Insp. P Max Flow  
 r E r E r E r E r E r E  
SpO2 -0.55 3/3 0.64 3/3 -0.55 3/3 -0.64 3/3   -0.58 3/3 

C
O

PD
 c

at
eg

or
y 

PaO2         -0.75 1/3   
PaCO2         0.90 2/3   
pH         0.50 0/3   
O2 Index 0.87 2/3 -0.47 3/3 0.84 2/3 -0.87 3/3   -0.79 3/3 
Ve (ml)             
PIP (mbar) -0.59 3/3   -0.81 2/3 0.56 1/3 0.59 2/3 0.68 3/3 
Plateau -0.59 3/3   -0.79 2/3 0.57 1/3 0.52 1/3 0.66 2/3 
C (l/bar)         -0.84 1/3   
R (mbar/L/s) -0.50 3/3   -0.71 2/3 0.52 1/3 0.47 1/3 0.58 3/3 
HR   0.55 2/3         
HCO3         0.89 0/3   
SpO2             

N
or

m
al

 L
un

gs
 c

at
eg

or
y 

PaO2 0.92 3/3 -0.61 3/3   -0.70 3/3 0.82 3/3 -0.72 3/3 
PaCO2 -0.93 3/3 0.85 3/3   0.89 1/3 -0.93 3/3   
pH 0.91 2/3 -0.79 2/3   -0.84 1/3 0.89 3/3   
O2 Index 1.00 3/3 -0.89 3/3   -0.94 3/3 0.99 3/3   
Ve (ml) -0.59 1/3 0.82 0/3   0.78 0/3 -0.70 2/3   
PIP (mbar)           0.59 2/3 
Plateau             
C (l/bar)   0.51 1/3   0.50 0/3     
R (mbar/L/s)             
HR 0.52 3/3 -0.76 3/3   -0.72 1/3 0.64 3/3   
HCO3             
SpO2 -0.65 3/3     -0.68 3/3     

A
L

I-
A

R
D

S 
ca

te
go

ry
 

PaO2             
PaCO2   0.91 3/3     0.90 2/3 -0.86 2/3 
pH     0.75 0/3       
O2 Index -0.84 3/3   -0.91 3/3 -0.98 3/3     
Ve (ml) 0.86 3/3   0.84 3/3 0.92 1/3     
PIP (mbar)     0.86 3/3     0.79 3/3 
Plateau 0.57 3/3   0.89 3/3 0.72 1/3     
C (l/bar)             
R (mbar/L/s)             
HR             
HCO3   0.76 0/3     0.86 0/3 -0.75 0/3 
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