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Abstract— We test the robustness of a closed-loop treatment
scheduling method to realistic HIV viral load measurement
error. The purpose of the algorithm is to allow the accurate
detection of an induced viral load minimum with a reduced
number of samples. Therapy must be switched at or near
the viral-load minimum to achieve optimal therapeutic benefit;
therapeutic benefit decreases logarithmically with increased
viral load at the switching time. The performance of the
algorithm is characterized using a number of metrics. These
include the number of samples saved vs. fixed-rate sampling,
the risk-reduction achieved vs. the risk-reduction possible with
frequent sampling, and the difference between the switching
time vs. the theoretical optimal switching time. The algorithm
is applied to simulated patient data generated from a family
of data-driven patient models and corrupted by experimentally
confirmed levels of log-normal noise.

I. INTRODUCTION
The Human Immunodeficiency Virus (HIV) is a retrovirus

which infects CD4+ T helper cells. If the infection is
untreated, the eventual result is chronic immunodeficiency.
HIV replication is highly error-prone, and treatment with
a single antiviral drug quickly leads to drug resistance.
To overcome this problem Highly Active Anti-Retroviral
Therapy (HAART) uses three antiviral drugs simultaneously
to control HIV replication and increase the mutational bar-
rier, decreasing the likelihood of drug resistance emergence.
While this has been very successful, virological failure still
occurs in 30-50% of patients starting any given antiviral
regimen [1].This failure necessitates a change in antiviral
regimen.

Our previous work has demonstrated the possibility of
reducing the likelihood of a second failure following the
change in antiviral regimen. These methods employ either
timed treatment interruptions or permuted antiviral regimens
in order to induce a transient drop in the viral load. By
switching to the new therapy at the minimum of this drop,
we can reduce the magnitude of the failure risk due to pre-
existing resistance by an order of magnitude [2], [3], [4].

In order to implement this method, it is necessary to have
a method of determining the minimum viral load time. The
viral dynamic parameters vary widely from patient to patient,
so a priori estimation will not work. Frequent sampling
of the viral load, weekly or twice-weekly, is sufficient to
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find the viral load minimum within an acceptable margin.
However, sampling the viral load is expensive and invasive,
motivating the development of a method yielding acceptable
performance in finding the minimum that uses the fewest
possible number of viral load measurements.

In previous papers we proposed a closed-loop sampling
algorithm using recursive parameter estimation for a reduced-
order viral load model which showed a 50% reduction in
the number of required samples with no degradation in
performance compared to fixed sampling on a 3-day interval
[5], [6]. However, this previous analysis used a normally-
distributed noise model with a standard deviation of 5%
of the nominal measurement, and tested the performance
only against a single nominal patient model. In this paper,
we introduce a realistic model of viral-load measurement
uncertainty, and use a recently developed library of patient
models identified from experimental data to test the algo-
rithms robustness to both measurement noise and model
uncertainty using a Monte-Carlo approach.

II. REGIMEN SWITCHING

A. Competition Model

The virus dynamics among target cells, infected cells and
free HIV virions during HAART, when only one previous
therapy has failed, are described in the ordinary differential
equations system presented in [1]:

ẋ = λ −dx−βw(1−u1)(1−u2)xvw
−βr(1−u2)xvr

ẏw = βw(1−u1)(1−u2)xvw
−awyw +λw

ẏr = βr(1−u2)xyr−aryr +λr
v̇w = kwawyw−uwvw
v̇r = kraryr−urvr

(1)

This model describes the dynamics of infection for two
strains of the virus, one of which is partially resistant to
HAART. A simple description of reservoir dynamics is also
included. This model’s states are defined as x, the CD4+ T
cells that are susceptible to infection (target cells); yw, CD4+
T cells infected by wild-type virus vw; and yr, the CD4+ T
cells infected by resistant virus vr.

The parameters are λ , the generation rate of the target
cells; d, the natural death rate of target cells; βw and βr, the
infection rates of wild-type and resistant virus respectively;
aw and ar, the death rates of cells infected by wild-type and
resistant-type virus respectively; λw and λr, the activation
rate of long-lived quiescent infected cells for two virus
types; u1 and u2 represent the application of two separate
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antiviral regimens; kw and kr, the number of viral particles
emitted per cell infected by wild-type and resistant-type virus
respectively (burst sizes). The values of u1, u2, may be
applied between 0 and 1. Because of the excessive toxicity,
we do not apply the both regimens at the same time.

The intervention proposed in [1], [2], [3], [4] involves
switching from a failing regimen (u1(t) = 1, u2(t) = 0) to
a successful regimen (u1(t) = 0, u2(t) = 1) in such a manner
as to minimize the risk of a third strain virus emerging,
resistant to the new antiviral regimen u2. The algorithm of
this intervention is summarized in the next section.

B. Switching Strategy

The switching strategy proposed in [1], [2], [3], [4]
consists in obtaining a drug application schedule in order
to generate a total virus load decrease prior to introducing
a new regimen to replace a failing regimen. In the case
where only a single regimen has failed, this can only be
accomplished through a schedule of treatment interruptions
using the failing regimen. Specifically, based in interruptions,
the strategy has the following steps:

1) Interrupt the failed therapy.
2) Then, when the virus load has reached a steady state,

the failed regimen is reintroduced.
3) The reintroduction yields a decrease in the total virus

load until the population of resistant virus is greater
than the population of the wild type virus, hence, the
total virus is at a minimum when the wild and resistant
virus populations are equal; at this time we introduce
the new antiviral regimen.

This can be implemented by sampling frequently on a fixed
schedule; however, the time to minimum following reintro-
duction can vary from weeks to months, so the potential
number of expensive and invasive measurements can be quite
large. To find the minimal viral load time using the minimal
number of samples, we propose to use a closed loop sampling
algorithm which recursively estimates the minimum time,
and uses these estimates to plan the next sample time. This
sampling algorithm will be described in the next section.

III. CLOSED-LOOP VIRAL LOAD SAMPLING

A. Problem Definition

Equation 1 describes the HIV dynamics well across many
different treatment conditions, but it is a nonlinear differential
equation with 12 parameters and 5 states, which would
require at least 17 measurements to begin system identifi-
cation. Since the treatment schedule prior to implementing
our closed-loop sampling algorithm always initiates the same
basic behavior in the viral load (approximately exponential
decay followed by approximately exponential rebound), we
can use an approximation of the solution to the model
described in 1 for the total virus load vw(t)+ vr(t) after the
failed regimen has been reintroduced given by the function:

v(t,Θ) = vw(t0)e−γw(t−t0)+ vr(t0)eγr(t−t0) (2)

where Θ = (vw(t0),γw,γr) are the parameters to be estimated
(vr(t0) is omitted because v(t0,Θ) = vw(t0) + vr(t0) and
v(t0,Θ) is known).

Thus, taking into account all the above, given:

• a set of few samples of the viral load v̂ = v̂1, v̂2, ..., v̂m
with m small,

• the time of each samples t̂ = t̂1, t̂2, ..., t̂m,
• an Objective Function f{v̂,v(t̂,Θ)} which defines the

distance between the samples v̂ and the approximation
solution v(t,Θ) in t = t̂,

• and an approximation function of the viral load v(t,Θ),

the problem is design one algorithm to find the parameters
Θ̂ = (vw(t0),γw,γr) such that,

Θ̂ = argmin f{v̂,y(t̂,Θ)} (3)

subject to

vw(t0) > 0
γw > 0
γr > 0
γw > γr

(4)

using the minimum number m of samples (t̂i, t̂i). In this
case the Nonlinear Least squares approach is used to define
f{v̂,v(t̂i,Θ)} as

f{v̂,v(t̂,Θ)}= ln(
1
m

m−1

∑
i=0

v̂i− v(t̂i,Θ)) (5)

And the iterative simulated annealing stochastic method built
in MATLAB is used to find Θ̂

B. Algorithm

Achieving a minimal number of samples require a closed-
loop method [2], where for an initial value of m (i.e. m = 3),
the parameters Θ are estimated and a time for the next
sample between Tmin and Tmax, the minimal and maximal
distance (days) of the last sample is calculated. To determine
this time, the minimum of the v(t,Θ) curve is calculated.
This step is repeated J times with a proportional gaussian
random noise added to the sampled data from the model
v̂(t̂i), with standard deviation equal to 5% of the nominal
value. For each repetition j the minimal viral load time
t j = argminv(t,Θ̂) j is calculated, and the earliest case tmin =
inf j∈ J j is chosen as the time to take the next sample (See
algorithm III-B).

The Algorithm is described below, using parame-
ters defined in the table I. The algorithm termi-
nates when it predicts that the minimum time is
less that tmin in the future. (See algorithm III-B).
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input : A set of samples (t̂i, v̂i) with (i = 1...3)
output: tmin, A number of samples m (with m > 3)

repeat
find tmin = in f j∈ J j;
if tmin− ts > Tmax then

ts = ts +Tmax;
else

if tmin− ts < Tmin then
ts = ts +Tmin;

else
ts = tmin;

end
end
Take a new sample at time ts;

until tmin > ts;
Algorithm 1: Closed-Loop Sampling General Algorithm

Tmin minimal sample interval distance
Tmax maximal sample interval distance
(t̂i, v̂i) the ith pair of measurements from

the set of samples of the viral load (i = 1...m)
ts time of the last sample
t0 time of the reintroduction of the failed regimen

v(t,Θ) an approximation of the viral load
tmin time of the minimal viral load in the

approximation v(t,Θ)

TABLE I
VARIABLES DEFINITION

ROBUSTNESS TO HIV RNA PCR VARIANCE

We test the robustness of the algorithm described above to
measurement noise. The variance which is common in stan-
dard Polymerase Chain Reaction HIV RNA quantification is
log-normal, with a standard deviation for large samples of
approximately ±0.07 log [7]. This measurement noise gets
proportionally larger for smaller viral loads. In our simulated
patient model, we corrupt the measurements using this noise
model.

C. Monte-Carlo Testing

The experimental data is simulated by the model 1 using
a set of 400.000 parameter values estimated by Bayesian
techniques [8] from patient viral load data from two different
patients[9]. The sets of parameter values reflect the natural
uncertainty in the model parameters due to measurement
noise, and the parameters from different patients represent
the expected interpatient variation.

The algorithm is tested in a Monte-Carlo fashion by
randomly choosing a parameter set from the 400,000 pa-
rameter sets described above and randomly varying the
initial conditions for vw and vr. The differential equation of
Equation 1 is then used to generate our simulated patient
viral load measurements, which are corrupted in a log-normal
fashion.

D. Experimental Protocol

In order to evaluate the robustness of the algorithm we
repeat the following steps 300 times:

1) We generate the viral load data according to a ran-
domly selected parameter set.

2) We add gaussian noise to the viral load data in a log10
scale with a standard deviation equal to 0.1 (also in a
log10 scale).

3) For each row we run the closed loop algorithm to eval-
uate the minimal sampling algorithms performance.

4) We compute the number of samples needed for the
algorithm to find the minimal time.

E. Results

Despite the noise applied to the data, the minimum time
estimated (see figures 1 and 2) is, for the most of the cases,
ten days and two weeks early to the actual minimum time.
The viral load at the time of switching is as close as 1000
copies/ml shown in figures 5 and 6. The number of samples
saved compared to a frequent sampling method is shown in
figures 3 and 4.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

time (days)

Fr
eq

ue
nc

y

 

 
Diff between nominal and estimated min viral time

Fig. 1. Histogram Error Time Patient Parameter Set 1
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Fig. 2. Histogram Error Time Patient Parameter Set 2
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Fig. 3. Histogram diff number of samples Patient Parameter Set 1
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Fig. 4. Histogram diff number of samples Patient Parameter Set 2

IV. CONCLUSIONS

In this paper we have implemented a Monte-Carlo ap-
proach to testing the robustness of a closed-loop sampling
algorithm for HIV. The algorithm is designed to find the
minimum of an induced transient crash in the viral load
using a reduced number of samples. We generated viral load
measurement data using randomly selected patient models
from a table of models previously estimated from clinical
data. We corrupted the data according to the observed log-
normal variance of HIV PCR measurements.

The increased level of variation in this paper reduced the
performance of algorithm compared with previously reported
measurements. The average achieved risks are better than
those obtained by relying on an open-loop estimate of the
minimum time, but they are not sufficient for implementa-
tion. Our future work is focusing on improving this robust
performance by modifying the internal variance model in the
algorithm and improving the stop criterion. This should allow
us to achieve better performance in real world conditions.
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