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Abstract— We investigated numerical methods for predictors
in a multiscale cardiovascular simulation model. The proposed
method predicts initial approximations for the iterative con-
vergence calculations of the strong coupling method using
the smoothing spline to remove errors from values of past
timesteps and using the linear and second-order extrapolation.
The new coupling algorithm was used for coupling a left
ventricular finite element model to a myocardial excitation-
contraction model. We performed experiments with different
values for the smoothing parameterλ and with linear and
second-order extrapolations.λ = 1 with the linear extrapolation
gave the best results. It reduced computation time by 91%
compared to the strong coupling method. With the use of the
smoothing spline, distance between the initial approximation
and converged solution reduced by 62%, while the average
number of iterations reduced by 32%. The smoothing spline
can be used to improve the accuracy of predictors and reduce
the number of iterations needed for the computation of the
convergence procedure.

I. I NTRODUCTION

The cardiovascular system is a system in which the heart
acts as a pump to circulate blood through a system of vessels.
The pump function of the heart is a result of the contraction
of myocardial cells. The contraction is brought about by
excitation-contraction coupling, a complex interaction of ions
and cross-bridges within the cell. As the heart expands
and contracts, hemodynamics come into play in which the
elasticities of the myocardial wall and blood vessels deter-
mine the blood flow through the system. As a result, the
cardiovascular system is a complex system composed of
the interaction of myocardial electrophysiology, ventricular
structural dynamics, and hemodynamics of the circulatory
system.

Several models simulate the interaction of excitation-
contraction coupling and ventricular deformation[1], [2].
Some models further combine models of the circulatory
system to simulate the resistance and compliances of the
blood vessels and the resulting interaction of blood flow and
the vessels [3], [4], [5]. In these models, each phenomenon
of myocardial electrophysiology, ventricular structural dy-
namics, and hemodynamics is modeled by the individual
system of equations. Simulation of the integrated multi-
domain model for multiple relating phenomena is called
coupling simulation.

Coupling simulation is achieved by coupling calculation of
multiple systems of equations. There are two major coupling
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methods: the weak coupling method and the strong coupling
method. The strong coupling method solves the multi-domain
equations as a single system. Strong coupling of the cardiac
mechanics model have been investigated before[1], [2], [6],
[7]. The strong coupling method allows for stable and
accurate calculation. However, the coupled models used over-
simplified myocardial electrophysiology or structural models
to compensate for the computational intensity of the strong
coupling method. On the other hand, the weak coupling
method uses a simpler and less computationally intensive
method in which shared physical quantities are exchanged
between timesteps and simulations are performed in parallel.
However, instabilities of the weak coupling method have
been addressed in the past[1], [3], [6], [7].

Some strategies have been developed to overcome the
problems of the weak coupling method. One method used
to stabilize the weak coupling method is approximating the
force-length equation in the contraction model using a first-
order delay equation [1], [3]. This method allows for the
”smoothing” of the calculated myocardial contraction force.
However, this solution may not be sufficient in mitigating
the effects of the weak coupling method, especially if the
equations for excitation-contraction require high precision in
its calculation.

With respect to the strong coupling method, in order
to reduce computational intensity, a method for improving
convergence rate using predictors in cardiovascular simu-
lations was proposed [4]. However, this was done with
pressure updates, in which ventricular pressure had to be
iteratively updated for the coupling of a ventricular model
and circulation model.

In this paper we propose a method to improve the conver-
gency of the strong coupling method by use of the smoothing
spline and extrapolation. We demonstrate the method using
a multiscale cardiovascular simulation model which includes
cell electrophysiology, ventricular deformation, and circula-
tory hemodynamics. The simulation is also compared with
the original strong coupling method.

II. M ODEL EQUATIONS

A. Myocardial Excitation-Contraction Model

The electrophysiology of myocardial cells are simulated
by the Kyoto model[8] with a modification[3]. The Kyoto
model uses the contraction model proposed by Negroni
and Lasconi (NL model) [9]. The NL model calculates
myocardial contraction force from cross-bridge dynamics
of the thick and thin filaments and calcium kinetics of
the binding of calcium and troponin. Both the cross-bridge
dynamics and calcium kinetics take into account its length

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 137

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



dependent aspects. Ca+2 transients are modeled by equations
in the Kyoto model.

The modification in [3] accounts for the instabilities
introduced in the force-length equation of the NL model.
The force-length equation is stabilized by replacing the
equation with a single order delay equation. The myocardial
contractile force calculated from the modified version of the
NL model remains length dependent. Therefore, the force
can be represented as a function of half sarcomere lengthL:
Fb(L).

B. Left Ventricular Structural Dynamic Model

The left ventricular structural dynamic model (LVFEM)
is a finite element model which represents the structural
deformation of the ventricular wall. Structural deformation
is calculated by a balance equation which contains active
and passive stresses for each element and LV pressure on
the inner wall. The finite element method is used to solve
for the balance equation and meet the requirements for the
boundary condition of LV volume which is defined by the
circulatory model. For simplicity, the balance equation will
be written as an implicit function:

0 = H(L,Fb, Plv, Vlv), (1)

whereFb andL respectively represent vectors of myocardial
forces and half sacromere lengths of representative cells for
finite elements, andPlv andVlv are LV pressure and volume
respectively.

C. Circulatory hemodynamics

The circulatory model calculates hemodynamics and the
resulting change in LV volume. Circulatory hemodynamics
of pulmonary preload and aortic afterload were modeled
using the Windkessel model. We adopted the 3-element
windkessel model to simulate the afterload and added a
single element for the simulation of the preload. The re-
sulting equation for the modified Windkessel model uses LV
pressure as the input variable for the calculation of blood
flow.

dVlv

dt
= Qin(Plv)−Qout(Plv), (2)

where the functionQin represents inflow governed by
preload which consists of mitral resistance and pulmonary
pressure, andQout is outflow governed by the afterload
which consists of aortic compliance, aortic resistance and
resistance of the aortic valve.

III. C OUPLING METHODS

1) Strong Coupling:The strong coupling method between
the myocardial cell model and LVFEM used in our simu-
lation model will be explained. With this method, the bi-
domain equations described the myocardial cell model and
LVFEM are solved together as a single system. The procdure
requires length updates which are performed iteratively. At
each iteration step, the following equation is solved with
respect tõL(tn)

i .

0 = H(L̃
(tn)
i , Fb(L

(tn)
i ), P

(tn)
lv , V

(tn)
lv ) (3)
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Fig. 1. Flow chart for the proposed coupling method at each timestep

Myocardial contractile forceFb is calculated with lengths
L
(tn)
i . The boundary condition for LV volumeV (tn)

lv is
calculated in the circulatory model from eq. 2.

At this point, convergence is achieved when the residual of
lengthsRlength satisifes the convergence toleranceεlength.

Rlength = L
(tn)
i − L̃

(tn)
i |Rlength|max < εlength (4)

If eq. 4 is satisfied, calculation for thenth timestep is
complete. If the convergence tolerance is not satisfied, the
procedure returns to solving the force equation forL

(tn)
i+1

which is updated using the bisection method and eq. 3 is
recalculated.

In general, for the initial approximation of lengths, the
converged solution for the last timestep is used:

L
(tn)
0 = L(tn−1). (5)

2) Weak Coupling:Unlike the strong coupling method,
the weak coupling method requires no iterative procedures
to be performed. Contractile forces generated by myocardial
cells are calculated using sacromere lengths for the last
timestepL(tn−1) calculated in the LVFEM.

0 = H(L(tn), Fb(L
(tn−1)), P

(tn)
lv , V

(tn)
lv ) (6)

The circulatory model is solved simultaneously as well for
the boundary condition as in eq. 2. The procedure ends here
as no convergence calculation is needed.

IV. PREDICTION METHODS FORINITIAL

APPROXIMATION

The number of iterations to convergence depends on the
distance between the initial approximation and the explicit
solution. The converged solution at the last timestep works
well as the approximation, when displacement between
timesteps are small. However, under large displacements this
leads to slow convergence of the iterative procedure.

The proposed algorithm adds a predictor to reduce the
number of iterations to convergence. This predictor method
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employs polynomial extrapolation for prediction and also
smoothing splines to correct calculation errors which might
effect the extrapolation. This method will be called the
proposed coupling method to distinguish it from the strong
coupling method.

Fig. 1 is a flow chart of the proposed algorithm for a given
timestep. First, smoothing splines are used to reduce residual
errors from values in past timesteps. This should mitigate
the effects of errors on the predictors. We used a simplified
version of the smoothing spline regression function in which
the second derivative is calculated by the second-order finite
difference method. The smoothing spline requires to solve
for the minumum of the following regression function.

Ess =
m∑
j=1

(L(tn−j) − L̂(tn−j))2

+ λ
m−1∑
j=2

(L̂(tn−j−1) − 2L̂(tn−j) + L̂(tn−j+1))2 (7)

As a result,{L̂(tn−1) · · · L̂(tn−m)} will contain the inter-
polated values of lengths up to themth past values. The
interpolated values are used in the following linear or second-
order extrapolation.

L
(tn)
0 = 2 · L̂(tn−1) + L̂(tn−2) (8)

L
(tn)
0 = 3 · L̂(tn−1) − 3 · L̂(tn−2) + L̂(tn−3) (9)

After the prediction of initial approximated lengths, the pro-
cedure is the same as the strong coupling method described
in sec. III.

V. SIMULATION

A simplified 4-element model was used for the LVFEM
model for all experiments. This simplification was neces-
sary to compare each experiment with the strong coupling
method, which is computationally intensive.

We tested the proposed coupling method on our cardiovas-
cular simulation system.λ was set to10−3, 10−2, 10−1, 1,
101, 102, 103. The convergence tolerance for length updates
was set to10−4 µM. The number of maximum iterations for
each timstep was set to 5 in order to reduce computation
time. The predictor was omitted in the beginning of the
simulation where past values forL were not available.

Distance between the initial guess and converged solution
d was measured for each timestep. The average distanced̄
was calculated. Average number of iteration per time step
N̄ was also observed to compare convergence efficiency
between the coupling methods. Simulation with the strong
coupling method was also performed for comparison.

The calculation timestep was set to 0.1 [ms] and each
cardiac cycle was set to 400 ms which resulted in a total
of 4000 timesteps per cardiac cycle. All simulations were
performed on IBM p690 (32CPU, POWER4 1.5GHz).
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Fig. 2. Average distance between solution and initial valued̄
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Fig. 3. Average iterations per timestep̄N

VI. RESULTS

Total wall clock time for simulation with the proposed
coupling method was reduced by 91% compared to the
strong coupling method. Fig. 2 shows average distanced̄
between the initial estimate and converged solution.λ = 1
for the linear extrapolation andλ = 10 for the second-order
extrapolation gave the best results. Fig. 3 shows average
number of iterationsN̄ for all experiments.λ = 1 is the
most efficient in terms of average number of iterations.N̄
with λ = 1 for the linear extrapolation was reduced by 57%
compared to the strong coupling method.

Table I compares the results of simulations performed with
and without the smoothing spline with smoothing parameter
λ = 1. For the linear extrapolation, using the smoothing
spline reduced average iterations̄N by 32% and average
distance d̄ by 62% compared to the results without the
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TABLE I

SIMULATION RESULTS PERFORMED WITHOUT THE SMOOTHING SPLINE

no spline with spline (λ = 1)
linear second-order linear second-order

N̄ 2.03 2.96 1.38 1.53
d̄(10−4) 2.05 4.18 0.784 1.01

smoothing spline. A similar comparison for the second-order
extrapolation gave a reduction of 76% and 48% forN̄ and
d̄ respectively. A significant change in wall clock time was
not observed.

VII. D ISCUSSION

We tested the proposed method with our cardiovascular
simulation model and used the weak and strong coupling
methods for comparison. Different values for the smoothing
parameterλ was tested for both the linear and second-order
extrapolations.

Correlation was found between̄N and d̄ for both pre-
dictors. This indicates that increasing the accuracy of the
predictors helps in reducing the number of iterations.

Using the smoothing spline reduced̄N and d̄. This indi-
cates that the smoothing spline is effective in increasing the
accuracy of the predictors by reducing errors which effect the
extrapolation.λ = 1 was the most efficient for the examined
simulation in terms of convergence efficiency and reducing
the calculation error.

In fig. 2, d̄ increases at both extreme ends ofλ. This indi-
cates the following remarks. If the value for the smoothing
parameter is too large, then the curve is over-smoothed and
the characteristics of the curve is lost. On the other hand, if
the value is too small, the oscillation of the curve caused by
residual errors makes the extrapolation unstable.

The oscillation of the curve seems to have effected the
predictors as well since the linear extrapolation out per-
formed the second-order extrapolation overall. This is most
likely due to Runge’s phenomenon for extrapolation of high
degrees. Linear extrapolation seemed to be more stable for
our simulation condition.

The simplicity of the procedure makes the weak coupling
method the preferred method when the errors produced by
the coupling are nominal. However, it is easy to see that un-
der large displacements the simulation will become unstable
and large errors will be produced[1], [6], [7]. The strong
coupling method is stable and its computational intensity
may be mitigated with the proposed method.

In this paper a combination of the smoothing spline and
polynomial extrapolation, which are both well-known and
computationally inexpensive, is employed as a predictor.
Performances of other predictors are to be evaluated. Another
factor not taken into account in the present predictor is the
inherent property of our simulation model. Utilization of the
model properties may improve prediction accuracy. On the
other hand, due to this model independency, the proposed
method should be applicable to other multiscale simulations
which utilize the coupling procedure as well as different

conditions for a particular model. In these cases, the optimal
smoothing parameter and degree of extrapolation will depend
on the models and conditions.

VIII. C ONCLUSION

The proposed coupling method is a modified version of
the strong coupling method which reduce the number of
iterations to convergence with the use of predictors that
employ polynomial extrapolation and the smoothing spline.
We found an optimal smoothing parameter which reduced
errors and facilitated the iterative procedure. Use of the
smoothing spline with this optimal parameter out performed
simulations without the smoothing spline.

The method may be used to replace the weak coupling
method which may be unstable if the electrophysiology
models require high precision in its calculation. Performing
the convergence procedure as in the strong coupling method
allows for a more stable and accurate calculation.

It may be possible to add an additional implementation
for the automatic selection of the smoothing parameter. Much
extensive research has been done in this area [10] and it may
be beneficial for increasing the accuracy of the predictors
since the smoothing spline is applied over varying shaped
curves.
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