
  

  

Abstract— In this study, we develop asynchronous 
probabilistic cell cycle models to quantitatively assess the effect 
of ionizing radiation on a human colon cancer cell line. We use 
both synchronous and asynchronous cell populations and follow 
treated cells for up to 2 cell cycle times. The model outputs 
quantify the changes in cell cycle dynamics following ionizing 
radiation treatment, principally in the duration of both G1 and 
G2/M phases. 

I. INTRODUCTION 
HE study of the cell cycle kinetics using mathematical 
models provides a quantitative framework to help 

identify and develop effective drug targets and multiple drug 
targeting strategies [1]. The cell cycle kinetics have been 
modeled using both top-down and bottom-up approaches. 
The mechanistic models that are based on biochemical 
modeling of protein dynamics involved in the cell cycle form 
the bottom-up approaches. The cell cycle kinetics are 
modeled using ordinary differential equation models in these 
bottom-up approaches [2-4]. The top-down approaches use a 
probabilistic approach to model the overall cell cycle 
kinetics in terms of calculating the distribution of cells 
among different cell cycle phases [5-9]. Both deterministic 
and probabilistic cell cycle models are used to study the 
effects of different treatments on the cell cycle kinetics in [2, 
5, 6, 8].  

In this work we develop an asynchronous probabilistic cell 
cycle model to quantitatively analyze cell cycle kinetics of 
asynchronous cell populations. The model developed here is 
an extension of our previous model that was developed for 
synchronous cell populations [10]. The asynchronous model 
developed here is the most general modeling framework that 
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is capable of capturing cell cycle kinetics of both 
synchronous and asynchronous cell populations under 
treatment or no treatment conditions. We have applied the 
asynchronous cell cycle models to study the effects of 
ionizing radiation (IR) treatment on the cell cycle kinetics of 
mismatch repair deficient (MMR-) human colorectal 
carcinoma cell lines. The DNA mismatch repair system is an 
important repair mechanism in the cell that ensures genomic 
stability by correcting mismatches generated during DNA 
replication and recombination. Mismatch repair deficiencies 
are known to be associated with certain cancers. The 
mismatch repair system also contributes to genomic stability 
by initiating cell death through apoptosis in response to 
certain DNA damaging agents, so the loss of mismatch repair 
leads to resistance to chemotherapeutic agents and other 
types of DNA stress [11], thereby complicating the cancer 
treatment process.  

The chemotherapy resistance of mismatch repair deficient 
tumors has led to the design of selective treatment strategies 
toward the treatment of such tumors. One such strategy is to 
use nucleoside analogs as radiosensitizers in order to 
increase the sensitivity of deficient cells to ionizing radiation 
(IR) [12].  We have studied the effect of the radiosensitizer 
iododeoxyuridine on the cell cycle kinetics of synchronized 
mismatch repair proficient and deficient cells in [10]. In this 
work, we have extended the synchronous models such that 
they apply to asynchronous cell populations, and used these 
models to study the effect of IR on mismatch repair deficient 
cells. Our long term goal is to use the models to 
quantitatively analyze the efficacy of the treatment strategy 
that combines iododeoxyuridine treatment with IR treatment. 
The model structure and equations are given in Section II, 
followed by the modeling results in Section III. Section IV 
concludes the paper. 

II. CELL CYCLE MODEL 
The cell cycle is the cycle of growth and division of cells. 

It is comprised of four sequential phases; namely gap 1 (G1), 
synthesis (S), gap 2 (G2) and mitosis (M) phases [13]. The 
gap phases are the phases where the cell growth occurs. The 
cells duplicate their protein mass and organelles during the 
gap phases. The suitability of internal and external 
conditions for S phase and mitosis are also monitored during 
the G1 and G2 phases respectively. The DNA duplication 
occurs in S phase. M phase is when the chromosome 
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segregation and cell division occurs. The experimental data 
we have used in this work is the flow cytometry data that 
provide the distribution of cells in each cell cycle state for an 
asynchronous cell population in terms of percentages.  

We have modeled the cell cycle using a finite state 
automaton where the states of the automaton correspond to 
cell cycle phases. We have first developed these models for 
synchronous cell populations in [10]. Here, we extend this 
effort to asynchronous cell populations which is the most 
general case. The jumps between the states in the finite state 
automaton model represent transitions from one cell cycle 
phase to another. The probabilistic jumps are modeled using 
continuous probability density functions to account for the 
time spent in each cell cycle phase. The population behavior 
is obtained by aggregating individual cell models. The 
probability density function fX-Y(tj|ti) represents the jump 
from state X to state Y at time tj,  given that the jump to state 
X occurred at time ti. The model is shown in Fig. 1, together 
with an example of the probability density function used in 
the development of the model. We have used triangular 
density functions that are defined by two parameters; the 
mean (m) and the support (v). We have G2 and M phases 
lumped together in the model because the experimental data 
that comes from flow cytometry measurements provide data 
on the lumped phase instead of the individual G2 and M 
phases. 
 

 
Fig. 1.  Probabilistic mathematical model of the cell cycle (panel A) 
and an example of the probability density function (panel B). 
 
The state variables of the model (ni’s) are the flow of cells 

into each cell cycle state per unit time. The update equations 
for each ni are as follows: 
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For the equations given in (1), n1 is the flow into G1 phase, 

n2 is the flow into S phase, and n3 is the flow into G2/M 
phase. The flow into a particular cell cycle phase is 
calculated as the convolution (denoted by the symbol ∗ on 
the right hand side of the equations) between the flow into 

the previous cell cycle phase and the probability density 
function that represents the jump from this previous cell 
cycle phase. The equations represent the flow of cells that 
have left the previous cell cycle phase and have entered the 
next cell cycle phase. The factor 2 in the equation for n1 is 
due to the doubling of the cells leaving the G2/M phase and 
entering the G1 phase.  

The total number of cells in each cell cycle phase is 
calculated as the integral of the difference between the flow 
of cells into a particular cell cycle phase and the flow of cells 
leaving that cell cycle phase. The equations for the total cell 
numbers in each cell cycle phase are given below: 
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For the equations given in (2), N1 is the total number of 
cells in G1 at time t, N2 is the total number of cells in S 
phase, and N3 is the total number of cells in G2/M phase. The 
distributions of cells in each cell cycle phase given as 
percentages are calculated using the formulas as follows: 
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The initial conditions for the flows n1, n2, and n3 are 

required to simulate the response of the asynchronous 
probabilistic cell cycle model given by the Equations 1 – 3. 
The initial conditions for the treatment cases are calculated 
from the experimental data for the untreated asynchronous 
cell populations that are in steady state. The steady state 
equations for the flows n1, n2, and n3 for the untreated (i.e. no 
IR) asynchronous cell population are: 
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For the equations given in (4), x1, x2, and x3 are the initial 

flows at time t=0, and tc is the cell cycle time for the 
untreated cell population. The steady state flows are 
substituted into the equations given in (2), and these 
equations are then substituted into equations given in (3) to 
obtain the percentages in each state at steady state as: 
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The percentages given in (5) correspond to the steady state 

percentages measured by flow cytometry for the untreated 
asynchronous cell populations. The initial flows x1, x2, and 
x3 can be calculated by comparing the equations given in (5) 
to the experimental data.  

The other parameter that is needed to evaluate steady state 
equations for the flows n1, n2, and n3 using (4) is the cell 
cycle time (tc) for the untreated asynchronous cell population 
at steady state. This cell cycle time can be calculated from 
the model parameters for the untreated case. The model 
development for the untreated case requires that the cells are 
perturbed from their steady state. This perturbation is 
obtained by synchronizing the cells by serum starvation for 
the experimental data presented in this work. The flow 
cytometry data obtained from the perturbed untreated cell 
population are then used to estimate the parameters of the 
model for the untreated asynchronous population. The model 
equations for the untreated case are the same as the treatment 
cases, and as given by the equations in (1) – (3). The 
untreated asynchronous data are used for model 
initialization, and the initial flows are calculated using the 
equations given in (4) and (5). The cell cycle time for the 
untreated cell population model is also estimated during the 
parameter estimation process.  

The model parameters (means and supports) are iteratively 
estimated using flow cytometry measurements. The cost 
function used for the model fitting is defined as: 
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In equation (6), d1, d2 and d3 are the flow cytometry 
measurements of the percentages of the cells in G1, S and 
G2/M phases, respectively. The corresponding model outputs 
for these percentages are represented by y1, y2 and y3, 
respectively. The inner summation runs for all the 
experimental time points from the initial time t0 to the final 
time tf. The “fmincon” function of Matlab® (The 
MathWorks, Inc, Natick, MA) is used for parameter 
optimization. The parameters are constrained such that the 
probability density functions have zero value for negative 
values of time and integrate to one. 

III. RESULTS 
We have developed asynchronous cell cycle models to 

quantitatively analyze the cell cycle kinetics of the mismatch 
repair deficient human colon cancer cell lines. The models 
are used to analyze the effect of ionizing radiation treatment 

on cell cycle kinetics of these cancer cells. The experiments 
were performed on HCT116 cell line. The cells were first 
synchronized by serum starvation. These untreated cells 
became less synchronous (asynchronous) within 10 – 12 hrs 
following release (t=0 hr) into fresh medium. The 
asynchronous cell populations were then treated with IR (5 
Gy) at 13, 16 and 21 hrs following release. IR was delivered 
using a 137Cs γ-irradiator at 370 cGy/min. Cell cycle profiles 
for both synchronous untreated cells and IR treated cells 
were measured using flow cytometry.  

The untreated cell populations are synchronized, and the 
synchronous models we developed previously are adapted 
for these populations [10]. The IR treatment was applied at 
later experimental times (t=13, 16 and 21 hrs) when the cells 
are already asynchronous, so the asynchronous models are 
used for these cases. The synchronous model equations are 
essentially the same as the asynchronous model equations 
just described in (1) – (3) in the manuscript. The primary 
difference between the synchronous and asynchronous 
models comes from the definition of the initial flows for n1, 
n2, and n3. The initial flow derivations for the asynchronous 
models are discussed above. For the synchronous case, all 
the cells are assumed to start in G1 at t = 0 hr, once they are 
released into complete media. All the other flows are initially 
assumed to be zero. 

The experimental data measures the distributions of the 
cells for the first and second cell cycles making it possible to 
estimate the parameters for a second cell cycle. We have two 
different parameter sets for the first and second cell cycles. 
Having a second set of parameters for the second and 
consecutive cell cycles is biologically meaningful since we 
observed that the cells have a longer first cell cycle time due 
to recovery from the stress induced by serum starvation, 
independent of subsequent treatment.  

The initial flows for the cell cycle models for IR treatment 
are obtained from model simulations of the synchronous 
models developed for the untreated case. The IR is applied at 
three different time points, i.e. 13, 16 and 21 hrs, and the 
data from all these three scenarios are combined together for 
parameter estimation. The results of the model outputs and 
the model parameters are given in Fig. 2 and Table I 
respectively. The models successfully captured the dynamics 
of the cell cycles of the untreated and IR treated cells. The 
IR treated cells show a G1 delay in their first cell cycle. IR-
treated cells remain in G1 phase 2 hours longer than the 
untreated cells. IR-treated cells also show a marked G2 arrest 
in their first cell cycle. The parameters for the second cell 
cycle are not compared due to very low sensitivity values for 
the IR treated case. 

The sensitivity analysis is carried out for each model 
developed in this work. The parameters of each model are 
either increased or decreased by 10% one at a time, and the 
corresponding change in the cost function given in equation 
(6) is calculated as percent change with respect to the 
original cost value calculated using the original model 
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parameters. The parameters that have changed the cost more 
than 4% on average for a 10% increase or decrease are 
reported as the parameters that are estimated effectively, and 
marked as boldface in Table I. The experimental data are 
sampled every hour, and this affects the sensitivity and 
estimation of the supports with values less than one hour. 
The sensitivity analysis is performed by decreasing or 
increasing the parameters by 10%. This also affects the 
sensitivity values of the supports due to the fact that changes 
in the parameters are usually less than an hour, and shorter 
(< 1 hour) sampling times are required in future experiments 
to increase the sensitivity to such small changes in the 
support values.  
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Fig. 2.  Asynchronous models for MMR- cells treated with IR. G1 
model (∆), G1 experimental data (-); S-phase model (◊), S-phase 
experimental data (-); and G2 model (ο), G2 experimental data (-).  

 
 

TABLE I 
MODEL PARAMETERS (m AND v ARE  

MEASURED IN HOURS) 

 MMR- 
Untreated 

MMR- 
IR 

 
First 
Cell 

Cycle 

G1 
m1 13.19 15.23 
v1 7.47 5.97 

S 
m2 8.66 8.61 
v2 5.53 8.10 

G2/M 
m3 3.47 11.06 
v3 0.57 11.06 

 
Second 

Cell 
Cycle 

G1 
m1 3.85 4.65 
v1 3.85 0.58 

S 
m2 6.24 29.92 
v2 0.74 29.82 

G2/M 
m3 2.32 36.14 
v3 2.32 26.27 

 
 
 
 

The synchronous model parameters for the untreated cells 
are effectively estimated. The model for IR treatment is 
sensitive to first cycle parameters. These models are not very 
sensitive to the parameters for the second cell cycle 
parameters. The reason is that IR treatment causes both a G1 
and G2 arrest in the first cycle, and the first cycle becomes 
longer. The data are taken for up to 28 hours, and because of 
the longer first cell cycles, the 28 hours data allow for 
effective estimation of only the first cell cycle parameters. 

IV. CONCLUSION 
The asynchronous cell cycle models developed in this 

work can be used to quantify the cell cycle kinetics of 
various cell types under no treatment and treatment 
conditions. The use of such models allows for the analysis of 
the effects of different treatments on cell cycle dynamics. 
These analyses can further be used to guide the design of 
effective treatment strategies that specifically target the cell 
cycle kinetics.  
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