
  

  

Abstract—The coagulation and fibrinolytic systems are 
complex, inter-connected biological systems with major 
physiological roles. The complex, nonlinear multi-point 
relationships between the molecular and cellular constituents of 
two systems render a comprehensive and simultaneous study of 
the system at the microscopic and macroscopic level a 
significant challenge. We have created an Agent Based 
Modeling and Simulation (ABMS) approach for simulating 
these complex interactions. As the scale of agents increase, the 
time complexity and cost of the resulting simulations presents a 
significant challenge. As such, in this paper, we also present a 
high-speed framework for the coagulation simulation utilizing 
the computing power of graphics processing units (GPU). For 
comparison, we also implemented the simulations in NetLogo, 
Repast, and a direct C version. As our experiments 
demonstrate, the computational speed of the GPU 
implementation of the million-level scale of agents is over 10 
times faster versus the C version, over 100 times faster versus 
the Repast version and over 300 times faster versus the NetLogo 
simulation. 

I. INTRODUCTION 
HE coagulation system (CS) is a complex, 
inter-connected biological system with major 

physiological and pathological roles. The CS may be viewed 
as a complex adaptive system, in which individual 
components are linked through multiple feedback and 
feedforward loops [1]. The non-linear relationships between 
the numerous coagulation factors and the interplay among the 
elements of the CS render the study of this biology at a 
molecular and cellular level nearly impossible [2].  

The study presented in this paper applies an agent based 
modeling simulation (ABMS) to the analysis of the CS due to 
the potential ability to quantitatively analyze individual 
components of each system at every point of simulation. 
ABMS is a dynamic modeling and simulation tool that allows 
the study of complex non-linear networked systems. In 
particular, ABMS represents a non-reductionist approach to 
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studying the biologic process, while retaining the information 
at an individual level [3]. The complexity of the CS has 
stymied experimental efforts to gain a system level 
understanding of the coagulation cascade and its subnetwork 
components. ABMS may readily provide elucidation of the 
pathophysiology of diseases related to the coagulation 
system. A model such as the one provided in the paper may 
prove informative regarding individual disease processes 
such as genetic and acquired disorders of coagulation. 
Unfortunately, ABMS is a computationally expensive 
process due to the large number of elements involved in such 
simulations (on the order of 106). Simulations take days to 
weeks to run on a desktop computer. Agent based modeling 
may be performed on existing frameworks. Two commonly 
used platforms for agent-based simulations, NetLogo and 
Repast, allow customized programming of user-specified 
agents interacting within a defined framework [4] [5]. 
NetLogo and Repast both provide platforms for defining the 
system and its interactions. However, both programming 
platforms face the challenge of decreased efficiency when 
presented with the millions of agents and interactions 
observed at the biological systems level.  

Recently, graphic processing unit (GPU) has evolved into 
an alternative platform for high speed general purpose 
computing, and in particular biomedical computing, due to its 
massive parallel architecture and supporting library. 
Typically a GPU consists of hundreds of processor cores that 
operate together; thus allowing higher throughput on parallel 
tasks than a CPU. Lysenko & D'Souza demonstrate the GPU 
power using the low level GPGPU [6]. Richmond et al. 
illustrated approximately 80 times speedup through the use of 
the NVIDIA Compute Unified Device Architecture (CUDA) 
based general agent based model framework [7]. Such studies 
motivated our current GPU-based coagulation simulation. 

This study presents an agent based modeling framework 
for blood coagulation, and implements this model based on 
the GPU via the CUDA library [8]. Besides, the speed gains 
are compared with three other implementations: NetLogo and 
Repast platforms, as well as a C program designed to run on a 
single processor. As far as we know, this is the first report of 
GPU implementation of an ABMS model for blood 
coagulation. 

II. METHODOLOGY 

A. Blood coagulation model 
The ABMS in this paper uses a two dimensional particle 

system whereby particles move freely and interact on a 
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reflect the location change into the grid data structure. This is 
done as follows. At the beginning of the simulation, the 
agents’ coordinates are scanned from the agentMatrix and the 
grid is built. The data structure of the grid is then updated 
during the simulation. In order to quickly look up the 
locations of all agents in the same grid cell, the grid data 
structure is organized based on grid cell coordinates and agent 
types. The grid data structure is described in Figure 3: 

 
Figure 3. Grid data structure. 

There are two important components in the grid structure: 
the head pointer of a 3 dimension array gridHead and the 
storage array gridNode. The first two dimensions of gridHead 
are the x and y coordinates, the third one is the agent type. In a 
general grid design, we may view each cell in the grid as a 
unit and put all the agents in a cell either in a linked list or an 
array. In this case, verification of the presence of the type of 
agent required to complete a reaction equation necessitates 
scanning the entirety (i.e. all agents) of a specific grid cell. 
The addition of another dimension to the grid, the agent type, 
allows for this verification through direct access of the 
gridHead. If there are some agents of this type, the head 
pointer points to the beginning of the linked list of these 
agents, called gridNode. gridNode is a set of one dimensional 
linked lists storing agent IDs of the same type agents on the 
same grid location. These agents are linked together into a 
two direction linked list. This design allows for rapid access 
to an agent of certain coordinates and type on the grid. Once 
an agent moves, the linked lists will be updated: inserting the 
agent from the previous list into a new list corresponding to 
the new location indexed by the new x, y coordinates and the 
agent type. In addition, the free nodes (including nodes of 
dead agents) of the storage array gridNode are also linked 
together into a linked list. Allocation of new ListNode to new 
agents or putting dead agent nodes into the free nodes’ list 
provides dynamic node allocation to match the constant birth 
and destruction of agents in the simulation. 

E. Agent birth and death 
The death of an agent is easier to handle than the birth of an 

agent. The death of an agent is managed solely through 
marking its state and removing the agent from the grid. As 
each reaction step is executed independently on each grid 

cell, grid removal does require access to the grid as a whole. 
Each CUDA thread executes only on its own sets of grid cells. 

In contrast, agent births are organized in a batch mode. 
During each simulation cycle, the dead agents leave space for 
new agents. Execution of a single thread by a batch operation 
places all newborn agents into spaces previously occupied by 
dead agents. If the number of newborn agents exceeds the 
space created by dead agents, newborn agents are placed in a 
buffered free space until they reach the maximal number of 
agents. Typically each cycle has several hundred reactions 
executed, thus handling new born agents does not need GPU 
parallel processing for speed. The batch operation for new 
born agents after each cycle reuses the memory of dead 
agents and therefore achieves dynamic memory allocation 
during simulation. 

F. Evaluation of implementations based on different 
platforms 
In order to compare the efficiency between our CUDA 

version and others, we also implemented the same simulation 
in three other platforms: a NetLogo based implementation, a 
Repast (Simphony) based implementation and a direct C 
implementation. NetLogo is set without graphic output in 
order to maximize the speed. The Repast version runs in the 
batch mode without graphic updates. The C version is similar 
to the CUDA version except for the parallel kernel execution 
of agents’ moves and reactions in CUDA. The speed is 
measured as the average time per cycle and all speedups are 
compared with the NetLogo version.  

III. RESULTS 

A. Simulation setting 
The number of initial agents is 886, 915 and the number of 

agents remains above 800,000 during all the simulations. 
Thus the population size is on the order of one million agents 
in the simulations. To illustrate the advantage of CUDA 
version on large scale simulations, we also compare the speed 
when the initial population size is reduced to 10% and 1% of 
our standard number of agents. These numbers corresponds to 
the level of 100k, 10k of population size. The CUDA version 
runs on a workstation with Tesla C1060 GPU, which has 240 
cores. Other versions run on a desktop with Intel Xeon 2.27G 
Hz CPU, 6G RAM. 

B. Verification of different implementations 
Because of the stochastic nature of agent based systems, 

the outputs of each simulation are unique. In order to verify 
the equivalence between the multiple simulation types, we 
run multiple simulations for each implementation. We 
compare the iteration cycles before termination (enough 
coagulation formed) among the four different 
implementations using ANOVA. A p-value 0.65 supports that 
there is no significant difference. 

C. Speed comparison 
From Table I, one can see that, in a million-level 

simulation, the speedup of the CUDA version is over 200 
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times versus the NetLogo version, over 100 times versus 
Repast version. The speed improvement is due to the high 
speed parallel CUDA execution as well as the special design 
of the data structures for this application. An interesting trend 
in the table is that as the number of agents increase, the 
speedups of both the C version and CUDA version increases. 
Thus, the designed framework scales much better than the 
versions based on the Repast or NetLogo. The economy of 
scale is built into the design of the grid structure as described 
previously in the methods section. We also observe that the 
CUDA version is over 10 times versus C implementation in 
the million-agent level. With the exception of GPU 
execution, the coding is almost identical; therefore, this 
speedup can be thought as purely from the high speed 
advantage of GPU execution versus CPU execution. We also 
note that the C version is slower than the NetLogo or Repast 
version when only 1% agents are simulated. In these smaller 
scale models, the speed benefits are outweighted by the cost 
of the dynamic updates of the specialized grid data structure. 
This suggests that the proposed framework is beneficial 
primarily for large scale agent based modeling. 

 
Table I. SPEED COMPARISON OF DIFFERENT 

IMPLEMENTATIONS 
# of 
Agents 

 NetLogo Repast C CUDA 

886,915 
(100%) 

Time/cycle 4740 ms 2310 ms 276 ms 20.1 ms 
Speedup 1 ~2 ~17 ~233 

88,693 
(10%) 

Time/cycle 210 ms 142 ms 43 ms 7.0 ms 
Speedup 1 ~1.5 ~4.8 ~30 

8,872 
(1%) 

Time/cycle 15 ms 11 ms 18.8 ms 6.1 ms 
Speedup 1 ~1.3 ~0.8 ~2.5 

* Abbreviations: h - hour, m – minute ms - millisecond. 

IV. DISCUSSION  
The speedup in mega scale is critical for large scale agent 

based simulations, as seen in biological modeling. In order to 
determine whether we have fully explored the GPU power, 
we check our speed gain with other related work, although the 
overall speed gains are highly application dependent. In [6], 
the speedup of GPU based simulation versus Repast is about 
125 times. Our model demonstrated a speedup of about 100 
times. In [9], a speedup of approximately 70 times is reported 
versus a Java version. These results are generally consistent 
with our comparison results between Repast and CUDA. 
Richmond et al. compared the CUDA implementation versus 
its original version of a general framework FLAME used for 
agent based simulation. The reported speedup is around 80 
times [7]. It seems to be due to the fact that the optimized 
GPU version may provide higher speed gains in more 
complex agent based system, i.e., the more complex the 
system is, the more probable a higher speedup using CUDA. 
This can be seen from the table in Richmond et al.’s paper, for 
the population size of 131072, GPU takes 5163 ms while 
CPU takes 463,310 ms for one iteration cycle. In our case, the 
time of each cycle in mega level is less than 300ms in the C 
version. A recent study from Intel shows that the speedup of 
tested applications between GPU and CPU are up to 14 times 

[10]. This is consistent with our comparison between CUDA 
and C version. The speed of the CUDA version (about 
20ms/cycle) offers the potential for a smooth dynamic display 
of agents on the grid (more than 24 updates per second). Such 
updates are the topic for future efforts that will bring 
computational modeling closer to clinical application. The 
emerging multi-GPU technologies may also help reduce the 
computational modeling time furthermore (NVIDIA CUDA 
4.0 offers new features to simplify multi-GPU programming). 

V. CONCLUSION  
The paper presents an agent based modeling and 

simulation approach for simulating complex interactions 
involved in blood coagulation system. The paper also 
presents a high-speed framework for the coagulation 
simulation that utilizes the computing power of GPUs. 
Results indicate that our complex models of human CS can be 
implemented using GPU based computing with significant 
performance gains. The GPU based coagulation modeling 
makes it possible for future applications including discovery 
of new mediators, understanding of proximal and distal 
effects of interactions between systems, discovery of new 
diagnostic and therapeutic options. Future directions include 
optimization for speed improvements. Increasing the number 
of agents by a factor of ten is another goal of the modeling 
project. It is anticipated that at this number (107) of agents, 
CUDA will be crucial for creating biological meaningful 
simulations that run in a reasonable amount of time. 
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