

Abstract—The coagulation and fibrinolytic systems are
complex, inter-connected biological systems with major
physiological roles. The complex, nonlinear multi-point
relationships between the molecular and cellular constituents of
two systems render a comprehensive and simultaneous study of
the system at the microscopic and macroscopic level a
significant challenge. We have created an Agent Based
Modeling and Simulation (ABMS) approach for simulating
these complex interactions. As the scale of agents increase, the
time complexity and cost of the resulting simulations presents a
significant challenge. As such, in this paper, we also present a
high-speed framework for the coagulation simulation utilizing
the computing power of graphics processing units (GPU). For
comparison, we also implemented the simulations in NetLogo,
Repast, and a direct C version. As our experiments
demonstrate, the computational speed of the GPU
implementation of the million-level scale of agents is over 10
times faster versus the C version, over 100 times faster versus
the Repast version and over 300 times faster versus the NetLogo
simulation.

I. INTRODUCTION
HE coagulation system (CS) is a complex,
inter-connected biological system with major

physiological and pathological roles. The CS may be viewed
as a complex adaptive system, in which individual
components are linked through multiple feedback and
feedforward loops [1]. The non-linear relationships between
the numerous coagulation factors and the interplay among the
elements of the CS render the study of this biology at a
molecular and cellular level nearly impossible [2].

The study presented in this paper applies an agent based
modeling simulation (ABMS) to the analysis of the CS due to
the potential ability to quantitatively analyze individual
components of each system at every point of simulation.
ABMS is a dynamic modeling and simulation tool that allows
the study of complex non-linear networked systems. In
particular, ABMS represents a non-reductionist approach to

Wenan Chen is with the Department of Biostatistics, Virginia

Commonwealth University (VCU), USA and VCU Reanimation Engineering
Science Center (VCURES) (corresponding author, e-mail: chenw6@
vcu.edu).

Kevin Ward is with the Department of Emergency Medicine, Virginia
Commonwealth University and VCURES (e-mail: krward@vcu.edu).

Qi Li is with the Department of Computer Science, Virginia
Commonwealth University (e-mail: liq@mymail.vcu.edu).

Vojislav Kecman is with the Department of Computer Science, Virginia
Commonwealth University and VCURES (e-mail: vkecman@vcu.edu).

Kayvan Najarian is with the Department of Computer Science, Virginia
Commonwealth University and VCURES (e-mail: knajarian@vcu.edu).

Nathan Menke is with the Department of Emergency Medicine, Virginia
Commonwealth University and VCURES (e-mail: nbmenke@aol.com).

studying the biologic process, while retaining the information
at an individual level [3]. The complexity of the CS has
stymied experimental efforts to gain a system level
understanding of the coagulation cascade and its subnetwork
components. ABMS may readily provide elucidation of the
pathophysiology of diseases related to the coagulation
system. A model such as the one provided in the paper may
prove informative regarding individual disease processes
such as genetic and acquired disorders of coagulation.
Unfortunately, ABMS is a computationally expensive
process due to the large number of elements involved in such
simulations (on the order of 106). Simulations take days to
weeks to run on a desktop computer. Agent based modeling
may be performed on existing frameworks. Two commonly
used platforms for agent-based simulations, NetLogo and
Repast, allow customized programming of user-specified
agents interacting within a defined framework [4] [5].
NetLogo and Repast both provide platforms for defining the
system and its interactions. However, both programming
platforms face the challenge of decreased efficiency when
presented with the millions of agents and interactions
observed at the biological systems level.

Recently, graphic processing unit (GPU) has evolved into
an alternative platform for high speed general purpose
computing, and in particular biomedical computing, due to its
massive parallel architecture and supporting library.
Typically a GPU consists of hundreds of processor cores that
operate together; thus allowing higher throughput on parallel
tasks than a CPU. Lysenko & D'Souza demonstrate the GPU
power using the low level GPGPU [6]. Richmond et al.
illustrated approximately 80 times speedup through the use of
the NVIDIA Compute Unified Device Architecture (CUDA)
based general agent based model framework [7]. Such studies
motivated our current GPU-based coagulation simulation.

This study presents an agent based modeling framework
for blood coagulation, and implements this model based on
the GPU via the CUDA library [8]. Besides, the speed gains
are compared with three other implementations: NetLogo and
Repast platforms, as well as a C program designed to run on a
single processor. As far as we know, this is the first report of
GPU implementation of an ABMS model for blood
coagulation.

II. METHODOLOGY

A. Blood coagulation model
The ABMS in this paper uses a two dimensional particle

system whereby particles move freely and interact on a

Agent Based Modeling of Blood Coagulation System:
Implementation Using a GPU Based High Speed Framework

Wenan Chen, Kevin Ward, Qi Li, Vojislav Kecman, Kayvan Najarian and Nathan Menke

T

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 145

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

discrete spatial grid. In this specific mode
agents of the system as the reactants, enzym
of the coagulation system. These include
Antithrombin III (AT), AT-H complex, to
types. The modeling diagram is illustrated
spatial grid is a two dimensional grid w
location is identified by its x and y co
coordinate pair (x, y) delineates a unique loc
grid is in the shape of a 112 x 112 square all
to interact and bounce off the edge of the gr
in this model are designated as either empt
one or more substrates, enzymes, or reacti
agents are allowed to move randomly with
on each direction (8 directions if not on
joining and breaking are governed by a
probabilities. The joining parameter determ
interaction between adjacent agents. The br
defines the extent of disruption of agents
This model sets the probability of joining an
on experimentally determined kinetic cons
are allowed to interact with all their
meaningful interactions are limited to thos
The neighborhood of each agent in this mode
agents located in the same grid location. Aft
the agents can move in a random manner to
location.

Figure 1. Agents in a grid with different co
types of agents.

ABMS modeling requires the assignment

of conversion associated with each ch
Reductionist in vitro experimental technique
detailed understanding of the individual ch
involved in the process of coagulation.
obtained by studying the individual reactio
basis for the rules governing the updating
each time step. We assigned a probability of
related to the kinetics of the reactio
configuration is random; each substrate
assigned a predefined number of agents base
initial concentration.

The initial configuration of ABMS contai
number of agents for the initial reac
proportional to the known concentration
normal physiologic conditions. These agent
distributed on the 2-D grid at time t=0. At ea
agents act independently with the two design
one unit randomly and perform reaction if p
reaction, some new types of agent may be ge
agent may die. One iteration cycle (time
performing the two actions for all existing a

el, we define the
mes, and products
XI, XIa, XII, II,
tally 62 different
in Figure 1. The

where the agent’s
oordinates. Each

cation. The spatial
lowing the agents

rid. Grid locations
ty or occupied by
ion products. The
equal probability
the border). The

a rule table with
mines the extent of
reaking parameter
that have joined.

nd breaking based
stants. The agents

neighbors, but
se in a rule table.
el is defined as all
ter each time step,
o an adjacent grid

olors as different

of the probability
hemical reaction.
es have allowed a
hemical reactions
The information

ons is used as the
of the ABMS at

f conversion value
ons. The initial

and enzyme is
ed on their desired

ined a pre-defined
ctants, which is

of agent under
ts were randomly

ach time step t, the
ned actions: move
possible. After the
enerated and some

step) consists of
agents in the grid.

As the simulation goes, the counts o
be updated. The termination condit
determined by the formation of a vir

B. GPU design overview
The idea is to let each execution

grid location. Since execution core
memory by itself while executing the
structures must be allocated and cop
GPU kernel execution. A major cha
involves GPU memory managem
generation of new agents and de
Although there is an upper bound
running simultaneously during simu
structures must have the flexibil
generated agents. In our solution w
memory block capable of accommod
number of living agents the simu
memory space of dead agents will b
agents. In our simulation, a pres
maximal number of living agents
million to allow million-level agents
both the data structures for agents a
change of the number of agents duri

The actions of each agent consis
step is moving action. The second is
adequate conditions for the specified
rule table) followed by execu
verification. In the simulation, these
separately in a batch mode. Specifica
agents perform the move action first
of all agents are executed.

C. Agent data structure
Each agent stores its coordinates

and the storage position in the grid e
the following schematic diagram:

Figure 2. Data structure agentMat

The agentMatrix uses the struct of

structs for coalesced memory access
the index in the array that the age
simulation, new born agents may re
dead agents before. There is also a po
used to access the grid data structure
update of grid explained later.

D. Grid data structure
The grid structure provides quic

certain location. After the agent’s m

…
…
…
…
…

agent type

state array

x coordina

y coordina

position in

f each type of agents will
tion of the simulation is
rtual clot.

n core in GPU work on a
cannot allocate the GPU
e kernel code, all the data
ied to the GPU before the
allenge of the simulation
ment due to constant
struction of old agents.
of the number of agents

ulation, the designed data
lity to integrate newly

we create a pre-allocated
dating the largest possible
ulation may reach. The
be collected for new born
set constant defines the
which is set to about 2
s in the simulation. Thus,
and the grid allow for the
ng the simulation.
st of two steps. The first
s a composite of verifying
d equation (rule from the

ution upon satisfactory
e two steps are executed
ally, in each cycle, all the
t. Then the reaction steps

, the agent type, its state
environment as shown in

trix using struct of arrays.

arrays instead of array of
ses [7]. The agent IDs are
ents occupy; thus, in the
use the agent ID used by
osition array pos which is
e quickly for the dynamic

ck access of agents on a
move, the system needs to

e ID array

y

ate array

ate array

n grid array

146

reflect the location change into the grid data structure. This is
done as follows. At the beginning of the simulation, the
agents’ coordinates are scanned from the agentMatrix and the
grid is built. The data structure of the grid is then updated
during the simulation. In order to quickly look up the
locations of all agents in the same grid cell, the grid data
structure is organized based on grid cell coordinates and agent
types. The grid data structure is described in Figure 3:

Figure 3. Grid data structure.

There are two important components in the grid structure:
the head pointer of a 3 dimension array gridHead and the
storage array gridNode. The first two dimensions of gridHead
are the x and y coordinates, the third one is the agent type. In a
general grid design, we may view each cell in the grid as a
unit and put all the agents in a cell either in a linked list or an
array. In this case, verification of the presence of the type of
agent required to complete a reaction equation necessitates
scanning the entirety (i.e. all agents) of a specific grid cell.
The addition of another dimension to the grid, the agent type,
allows for this verification through direct access of the
gridHead. If there are some agents of this type, the head
pointer points to the beginning of the linked list of these
agents, called gridNode. gridNode is a set of one dimensional
linked lists storing agent IDs of the same type agents on the
same grid location. These agents are linked together into a
two direction linked list. This design allows for rapid access
to an agent of certain coordinates and type on the grid. Once
an agent moves, the linked lists will be updated: inserting the
agent from the previous list into a new list corresponding to
the new location indexed by the new x, y coordinates and the
agent type. In addition, the free nodes (including nodes of
dead agents) of the storage array gridNode are also linked
together into a linked list. Allocation of new ListNode to new
agents or putting dead agent nodes into the free nodes’ list
provides dynamic node allocation to match the constant birth
and destruction of agents in the simulation.

E. Agent birth and death
The death of an agent is easier to handle than the birth of an

agent. The death of an agent is managed solely through
marking its state and removing the agent from the grid. As
each reaction step is executed independently on each grid

cell, grid removal does require access to the grid as a whole.
Each CUDA thread executes only on its own sets of grid cells.

In contrast, agent births are organized in a batch mode.
During each simulation cycle, the dead agents leave space for
new agents. Execution of a single thread by a batch operation
places all newborn agents into spaces previously occupied by
dead agents. If the number of newborn agents exceeds the
space created by dead agents, newborn agents are placed in a
buffered free space until they reach the maximal number of
agents. Typically each cycle has several hundred reactions
executed, thus handling new born agents does not need GPU
parallel processing for speed. The batch operation for new
born agents after each cycle reuses the memory of dead
agents and therefore achieves dynamic memory allocation
during simulation.

F. Evaluation of implementations based on different
platforms
In order to compare the efficiency between our CUDA

version and others, we also implemented the same simulation
in three other platforms: a NetLogo based implementation, a
Repast (Simphony) based implementation and a direct C
implementation. NetLogo is set without graphic output in
order to maximize the speed. The Repast version runs in the
batch mode without graphic updates. The C version is similar
to the CUDA version except for the parallel kernel execution
of agents’ moves and reactions in CUDA. The speed is
measured as the average time per cycle and all speedups are
compared with the NetLogo version.

III. RESULTS

A. Simulation setting
The number of initial agents is 886, 915 and the number of

agents remains above 800,000 during all the simulations.
Thus the population size is on the order of one million agents
in the simulations. To illustrate the advantage of CUDA
version on large scale simulations, we also compare the speed
when the initial population size is reduced to 10% and 1% of
our standard number of agents. These numbers corresponds to
the level of 100k, 10k of population size. The CUDA version
runs on a workstation with Tesla C1060 GPU, which has 240
cores. Other versions run on a desktop with Intel Xeon 2.27G
Hz CPU, 6G RAM.

B. Verification of different implementations
Because of the stochastic nature of agent based systems,

the outputs of each simulation are unique. In order to verify
the equivalence between the multiple simulation types, we
run multiple simulations for each implementation. We
compare the iteration cycles before termination (enough
coagulation formed) among the four different
implementations using ANOVA. A p-value 0.65 supports that
there is no significant difference.

C. Speed comparison
From Table I, one can see that, in a million-level

simulation, the speedup of the CUDA version is over 200

… … … …

… … … …

… … … …

… … … …

… … … …

…

…

…

…

…

x dimension

y
dim

ension

type dimension

gridHead

… gridNode

index pre next ListNode

147

times versus the NetLogo version, over 100 times versus
Repast version. The speed improvement is due to the high
speed parallel CUDA execution as well as the special design
of the data structures for this application. An interesting trend
in the table is that as the number of agents increase, the
speedups of both the C version and CUDA version increases.
Thus, the designed framework scales much better than the
versions based on the Repast or NetLogo. The economy of
scale is built into the design of the grid structure as described
previously in the methods section. We also observe that the
CUDA version is over 10 times versus C implementation in
the million-agent level. With the exception of GPU
execution, the coding is almost identical; therefore, this
speedup can be thought as purely from the high speed
advantage of GPU execution versus CPU execution. We also
note that the C version is slower than the NetLogo or Repast
version when only 1% agents are simulated. In these smaller
scale models, the speed benefits are outweighted by the cost
of the dynamic updates of the specialized grid data structure.
This suggests that the proposed framework is beneficial
primarily for large scale agent based modeling.

Table I. SPEED COMPARISON OF DIFFERENT

IMPLEMENTATIONS
of
Agents

 NetLogo Repast C CUDA

886,915
(100%)

Time/cycle 4740 ms 2310 ms 276 ms 20.1 ms
Speedup 1 ~2 ~17 ~233

88,693
(10%)

Time/cycle 210 ms 142 ms 43 ms 7.0 ms
Speedup 1 ~1.5 ~4.8 ~30

8,872
(1%)

Time/cycle 15 ms 11 ms 18.8 ms 6.1 ms
Speedup 1 ~1.3 ~0.8 ~2.5

* Abbreviations: h - hour, m – minute ms - millisecond.

IV. DISCUSSION
The speedup in mega scale is critical for large scale agent

based simulations, as seen in biological modeling. In order to
determine whether we have fully explored the GPU power,
we check our speed gain with other related work, although the
overall speed gains are highly application dependent. In [6],
the speedup of GPU based simulation versus Repast is about
125 times. Our model demonstrated a speedup of about 100
times. In [9], a speedup of approximately 70 times is reported
versus a Java version. These results are generally consistent
with our comparison results between Repast and CUDA.
Richmond et al. compared the CUDA implementation versus
its original version of a general framework FLAME used for
agent based simulation. The reported speedup is around 80
times [7]. It seems to be due to the fact that the optimized
GPU version may provide higher speed gains in more
complex agent based system, i.e., the more complex the
system is, the more probable a higher speedup using CUDA.
This can be seen from the table in Richmond et al.’s paper, for
the population size of 131072, GPU takes 5163 ms while
CPU takes 463,310 ms for one iteration cycle. In our case, the
time of each cycle in mega level is less than 300ms in the C
version. A recent study from Intel shows that the speedup of
tested applications between GPU and CPU are up to 14 times

[10]. This is consistent with our comparison between CUDA
and C version. The speed of the CUDA version (about
20ms/cycle) offers the potential for a smooth dynamic display
of agents on the grid (more than 24 updates per second). Such
updates are the topic for future efforts that will bring
computational modeling closer to clinical application. The
emerging multi-GPU technologies may also help reduce the
computational modeling time furthermore (NVIDIA CUDA
4.0 offers new features to simplify multi-GPU programming).

V. CONCLUSION
The paper presents an agent based modeling and

simulation approach for simulating complex interactions
involved in blood coagulation system. The paper also
presents a high-speed framework for the coagulation
simulation that utilizes the computing power of GPUs.
Results indicate that our complex models of human CS can be
implemented using GPU based computing with significant
performance gains. The GPU based coagulation modeling
makes it possible for future applications including discovery
of new mediators, understanding of proximal and distal
effects of interactions between systems, discovery of new
diagnostic and therapeutic options. Future directions include
optimization for speed improvements. Increasing the number
of agents by a factor of ten is another goal of the modeling
project. It is anticipated that at this number (107) of agents,
CUDA will be crucial for creating biological meaningful
simulations that run in a reasonable amount of time.

REFERENCES
[1] Monroe, D.M. and M. Hoffman, What Does It Take to Make the Perfect

Clot? Arterioscler. Thromb. Vasc. Biol., 26(1). 41-48, 2006.
[2] Zhu, D., Mathematical modeling of blood coagulation cascade: kinetics

of intrinsic and extrinsic pathways in normal and deficient conditions.
Blood Coagul Fibrinolysis, 18(7). 637-46, 2007.

[3] Bonabeau, E., Agent-based modeling: methods and techniques for
simulating human systems. Proc Natl Acad Sci, 99 Suppl 3. 7280-7.
2002.

[4] Wilensky, U. NetLogo. http://ccl.northwestern.edu /netlogo/. Center
for Connected Learning and Computer-Based Modeling, Northwestern
University. Evanston, IL. 1999

[5] Repast. Repast Organization for Architecture and Design, "Repast,"
Available at http://repast.sourceforge.net/. 2008.

[6] Lysenko, M., D'Souza, R. M. “A framework for mega-scale
agent-based model simulations on the GPU,” Journal of Artificial
Societies and Social Simulation. (JASSS). 2008.

[7] Richmond, P., Coakley, S., Romano, M. D. A high performance agent
based modeling framework on graphics card hardware with CUDA.
Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems. 2009.

[8] CUDA. http://www.nvidia.com/object/cuda_home_new.html.
[9] Strippgen, D., Nagel, K. “Using common graphics hardware for

multi-agent traffic simulation with CUDA,” International Conference
On Simulation Tools And Techniques For Communications, Networks
And Systems & Workshops. 2009.

[10] Lee, V. W., Kim, C., Chhugani, J., Deisher, M. Kim, D., Nguyen, A.
D., Satish, N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P.,
Singhal, R.and Dubey P. “Debunking the 100x gpu vs. cpu myth: an
evaluation of throughput computing on cpu and gpu.” In ISCA ’10:
Proceedings of the 37th annual international symposium on Computer
architecture, pp. 451–460, New York, NY, USA. ACM. 2010.

148

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

