
  

  

Abstract— In medical research it is of great importance to be 
able to quickly obtain answers to inquiries about system 
response to different stimuli. Modeling the dynamics of 
biological regulatory networks is a promising approach to 
achieve this goal, but existing modeling approaches suffer from 
complexity issues and become inefficient with large networks. 
In order to improve the efficiency, we propose the 
implementation of models of regulatory networks in hardware, 
which allows for highly parallel simulation of these networks. 
We find that our FPGA implementation of an example model 
of peripheral naïve T cell differentiation provides five orders of 
magnitude speedup when compared to software simulation. 

I. INTRODUCTION 
HE development of experimental methods and tools, 
together with the advances in computational power, has 

greatly improved the process of obtaining and collecting 
experimental data. However, we have now reached the point 
where the vast amount of data collected exceeds our capacity 
for analyzing it. At the same time, predicting the dynamics 
of complex molecular networks that control living organisms 
is still an important challenge of systems biology.  

Over the past decade, a number of computational 
approaches have been proposed for the purpose of modeling 
and studying biological networks. The complexity of these 
models increases rapidly with the size of the network. 
Moreover, simulations of such models are computed 
sequentially on general purpose CPUs, which is in contrast 
to the highly parallel nature of information flow within 
biochemical networks. To this end, several hardware-
oriented approaches to biological network simulation have 
been proposed recently [1][2][3]. They have all focused on 
the implementation of variants of Gillespie’s stochastic 
simulation algorithm (SSA) [4]. The authors in [1][2] 
implemented the SSA as a single FPGA thread, resulting in 
speedups of about one order of magnitude compared to a 
software implementation. More recent work [3] implements 
multiple simulation threads to achieve greater efficiency. 
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While these implementations do make SSA-based 
simulations more efficient, applications that use ODE [5][6], 
rule-based [7][8] and logical modeling [10][11][12] 
approaches do not benefit. 

In this work, we propose a design methodology (shown in 
Fig. 1 and described in detail in Section II) for a 
reconfigurable hardware, that is, Field Programmable Gate 
Arrays (FPGAs). We present our methodology using an 
example model for peripheral naïve T cell differentiation 
into regulatory vs. helper T cells, that has been proved to 
play a critical role in interactions between tumors and 
immune system. We show that hardware-based emulation of 
regulatory network models can greatly improve our 
efficiency of simulating these models, and therefore, 
produce rapid answers to inquiries about system response to 
a number of stimuli, pathogens or drugs. The contributions 
of this work, when compared to other proposed hardware 
approaches to studying biological networks include: 
• Hardware emulation of dynamic, logical models of 

regulatory networks; 
• FPGA design framework that allows for implementing 

different logical models and different simulation 
scenarios; 

• Implementation of a top module that allows for concurrent 
simulation of multiple implemented copies of the network; 

• Several orders of magnitude speedup in network 
simulation when compared to software-based approaches.  

II. HARDWARE DESIGN METHODOLOGY 
In this section, we describe the main steps of FPGA 

design and the specificities of designing for emulation of 
regulatory networks, using the peripheral naïve T cell 
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Fig. 1. Design flow: network model (logical, rule-based model), HDL 
model implementation and actual FPGA implementation. 
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differentiation example.  
The T cell model shown in Fig. 2 is adopted from [12], 

where the model has been determined through extensive 
literature survey and discussions with experts. In Fig. 2(a), 
we present the cell signaling network model with key 
elements and connections involved in differentiation. As it 
can be seen from the network, this model includes signaling 
from receptors (TCR, CD28, TGFβ, IL-2R), subsequent 
activation of transcription factors (AP-1, NF-AT, NFκB, 
STAT5, Smad3), gene expression (Foxp3, IL-2Rα, IL-2), as 
well as the effect of transcribed genes on receptor signaling 
(IL-2Rα, IL-2) and transcription (Foxp3). T cell 
subpopulation (regulatory, Treg, vs. helper, Th) ratios have 
been shown to play an important role in many immune and 
autoimmune pathologies, but the determinants of 
differentiation into these two phenotypes are not yet 
understood. It is known that a marker for Treg cells is Foxp3 
and a marker for Th cells is IL-2. It has been suggested in 
[13] that most of the cells differentiate into Th phenotype for 
high antigen dose, while a significant population of Treg 
cells results from stimulation with low antigen dose. In Fig. 
2(b), we also show the circuit model that we have developed 
in [12] and which we implemented in hardware. However, 
our hardware emulation methodology is general enough to 
allow implementation of any logical modeling of biological 
processes. 

The steps of FPGA design are presented as follows. We 
also describe how our approach can be generalized for 
different models of regulatory networks.  

A. Model definition 
In order to design a circuit that can emulate a biological 

network, one needs to consider several information sources 
or 'inputs' to the design, as shown in Fig. 1. This includes 
existing experimental data or knowledge about network 
interactions. Next, it is also necessary to identify the type of 
a model to be implemented. As described in Section I, 

previous work focused on implementing the Gillespie's 
simulation algorithm for the system of differential equations. 
We present here the implementation of a dynamic, logical 
model, but do not restrict our approach to logical models 
only. We plan to create a general-purpose framework that 
can translate rule-based and reaction-based models into 
hardware implementation. These models are usually written 
following existing software-simulation-tool templates and 
can be simulated using these tools. Finally, once the model 
is identified, one needs to define a set of inputs and outputs 
of interest.  

B. HDL framework  
Once the model is defined, the next step is the 

implementation of the model in a hardware description 
language (HDL). In this work, we use Verilog HDL [14]. 
Any network model defined as a logical model can be 
translated into an HDL description in a straightforward way. 
We translated the T cell model manually, but in the future 
we anticipate developing an automatic Logical Model → 
Verilog translator.  

The framework that we developed in Verilog consists of 
several modules necessary to control the simulation of the 
network. These modules define the simulation setup (e.g., 
number of rounds of simulation, deterministic vs. stochastic 
simulation, etc.). In this work, we use an asynchronous 
scheme for simulating the network following one used by 
the BooleanNet tool [10]. Each simulation round consists of 
applying the rules for the update of each element in a 
random order. The order matters because once an element is 
updated, the new value is used by subsequent update rules.  

The HDL framework includes the top-level module, 
which can be used to run several network copies in parallel. 
Fig. 3 shows how modules are connected within the top 
module (left), as well as part of the Verilog code for a single 
module (right).  

The Verilog description of the logical model relies on 

                  
 (a) (b) 

Fig. 2. T-cell differentiation network adopted from [12]: (a) Molecular interaction map and (b) Gate-based logic implementing the network. 
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'assign' statements. This is the simplest way to implement 
the network although statements such as 'if-else' and 'case' 
also exist in Verilog and can be suitable for other model 
implementations. If several copies of the model are 
instantiated and downloaded on a single FPGA board 
(modules 'M1'-'M6' in Fig. 3), the 'top' module can be used 
to connect wires from input switches (through a 
demultiplexer) to individual modules, as well as to connect 
outputs from individual modules to the display (through a 
multiplexer). 

Inputs to the framework are modeled as input wires 
connected to the 'top' and 'control' modules and include: 
Initial state vector, which initializes all elements of the 
network to a defined value; Element inhibitors and their time 
of addition, which define if there are elements to be turned 
off at some point during simulation; Time of stimulation 
removal, which defines if the stimulation that allows for 
activation of the network is removed during simulation; 
Gene knock-out information, which defines whether there 
are copies of the model in which some genes are 
permanently turned off. 

Outputs of the framework include signals representing 
either several elements that need to be measured, or all 
elements of the model. Tools for the simulation of designs 
written in HDL exist, thereby also allowing for viewing 
model outputs, that is, their behavior from the beginning to 
the end of simulation. More details about using the tools and 
all steps of specifying HDL design are provided in [15]. 

Finally, the written HDL implementation can be simulated 
and tested using a higher-level module, 'Testbench' (as 
shown in Fig. 1), which encloses the overall design. 

C. FPGA implementation 
When the model is implemented and tested, it can be 

downloaded onto an FPGA board. An FPGA consists of: 
'logic blocks', which can be configured to perform complex 
combinational functions, or simple logic gates like AND and 
XOR, a hierarchy of 'reconfigurable interconnects' that allow 
the blocks to be “wired together” and 'I/O pads', that are 
connected to switches, buttons and displays.  

 In this work, buttons are used to start and stop the 
simulation, while switches are used to select the activator or 

inhibitor. As an initial way of displaying results, the state of 
the network is displayed (in hexadecimal digits) on a bank of 
seven-segment light-emitting diode (LED) displays. 
Switches are used to select which network module results to 
display, and which outputs of the chosen network to display. 
An alternative method would be to use a block RAM 
(Random Access Memory) to store the values and display 
them on the monitor; we plan to explore this direction in the 
future.  

III. RESULTS 
We compared the runtime and results that were obtained 

from simulating our Verilog HDL framework (identical to 
those obtained from the displays on the FPGA board) with 
results obtained from software simulations in BooleanNet 
tool, which is implemented in Python [10]. Not only does 
the hardware emulation accurately reproduce the behavior of 
all elements of the network, but it is also orders of 
magnitude faster.   

In case of our T cell differentiation example model, we 
compute the speedup as follows. For each scenario, software 
simulations were run 200 times, which has been shown to be 
sufficient to estimate average values across the runs and 
account for the stochasticity in biological processes. 20 
update rounds are executed in each simulation run, where a 
round includes a single update of each element in the model 
(in our case, this is 54 update steps within the round). We 
simulated the network for 20 rounds only, due to the fact 
that the network reaches steady state within these 20 rounds 
in all studied scenarios. Simulations are run on an FPGA that 
has a speed of 1GHz (clock period of 1ns), with a single 
update step taking approximately five clock cycles. This 
leads to a single network module evaluation runtime on 
FPGA of: 

5 × 54 × 20 × 200 × 10-9 = 1ms 
Since an identical simulation setup takes about 60s to run 
using BooleanNet, a 60,000X speedup can be obtained using 
our FPGA implementation. Furthermore, we were able to 
implement six instances of the network on a Spartan 3 
FPGA board simultaneously and to execute them in parallel 
by implementing the top-level module as shown in Fig. 3. 
This provides an approximate linear speedup increase of 6 × 
60,000 or more than five orders of magnitude over 
BooleanNet. 

In Fig. 4, we present the comparison of several software 
simulation and hardware emulation results. In Fig. 4(a)-(b), 
we present the Foxp3 and IL-2 results for two different 
scenarios: stimulation with high and low antigen dose. As it 
can be seen from those figures, the proposed method is 
100% accurate when determining steady-state values. In Fig. 
4(c)-(d) we use several additional scenarios for comparison. 
Behavior of the system with addition of Akt and mTOR 
inhibitors has been shown in Fig. 4(c), where lines represent 
software simulation results and error lines show the 
difference between those results and hardware emulation 

Fig. 3. Implementation of a top-level control module: figure of the top level
module connecting network modules (left) and logical model
implementation in Verilog (right). 
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results. Finally, we also implemented the removal of stimuli 
that occurs at different times during simulation. Fig. 4(d) 
presents the comparison of steady-state values between 
software and hardware in that case.  

As it can be seen from Fig. 4, some discrepancies are 
observed when comparing hardware emulation results with 
software simulations. We do not believe that these 
differences will have any effect on the timing results, which 
is supported by their small magnitude, but we need to 
understand their origin in order to have confidence that the 
implementation is correct. The two main sources of possible 
error are noise arising from the relatively small sample sizes 
used in our comparisons (200) or a subtle difference in 
execution semantics arising in our FPGA simulations. To 
rule out the former, we simply need to run a larger number 
of trajectories and see if the differences disappear. More 
sophisticated statistical tests can also be applied [16]. If the 
differences persist and assuming there are no errors in the 
logic encoded with variable assignments, we will test for 
differences in execution semantics for fixed (instead of 
random) update orders. 

IV. CONCLUSION 
Modeling of biological regulatory networks is necessary 

for tackling medical and biological challenges. Moreover, 
being able to obtain fast answers to inquiries about system's 
response to different stimuli is of critical importance. We 
propose an FPGA design methodology that provides an 
efficient framework for emulating dynamic models of 
biological networks. Our results show that such a framework 
can accurately reproduce all results obtained through 
software simulation, but doing so orders of magnitude faster. 
Our future work will focus on generalizing the design to 
allow for emulation of different types of models and the 
improvement of displaying results to users. 
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 (a) (b) 

 
 (c) (d) 
Fig. 4. Comparison of results obtained through software simulation and hardware emulation of the T cell differentiation logical model for several scenarios 
and initial conditions: Results for high and low antigen dose, simulation (left) and emulation (right) for Foxp3 (a) and IL-2 (b); (c) Foxp3 results (SW – 
simulation, HW – emulation) for high antigen dose with addition of inhibitors, Akt (left) and mTOR (right); (d) Foxp3 and IL-2 steady state results from 
simulation (left) and emulation (right) when antigen is removed at round 3,6 or 9 and without antigen removal. 
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