

Abstract— In medical research it is of great importance to be
able to quickly obtain answers to inquiries about system
response to different stimuli. Modeling the dynamics of
biological regulatory networks is a promising approach to
achieve this goal, but existing modeling approaches suffer from
complexity issues and become inefficient with large networks.
In order to improve the efficiency, we propose the
implementation of models of regulatory networks in hardware,
which allows for highly parallel simulation of these networks.
We find that our FPGA implementation of an example model
of peripheral naïve T cell differentiation provides five orders of
magnitude speedup when compared to software simulation.

I. INTRODUCTION
HE development of experimental methods and tools,
together with the advances in computational power, has

greatly improved the process of obtaining and collecting
experimental data. However, we have now reached the point
where the vast amount of data collected exceeds our capacity
for analyzing it. At the same time, predicting the dynamics
of complex molecular networks that control living organisms
is still an important challenge of systems biology.

Over the past decade, a number of computational
approaches have been proposed for the purpose of modeling
and studying biological networks. The complexity of these
models increases rapidly with the size of the network.
Moreover, simulations of such models are computed
sequentially on general purpose CPUs, which is in contrast
to the highly parallel nature of information flow within
biochemical networks. To this end, several hardware-
oriented approaches to biological network simulation have
been proposed recently [1][2][3]. They have all focused on
the implementation of variants of Gillespie’s stochastic
simulation algorithm (SSA) [4]. The authors in [1][2]
implemented the SSA as a single FPGA thread, resulting in
speedups of about one order of magnitude compared to a
software implementation. More recent work [3] implements
multiple simulation threads to achieve greater efficiency.

Manuscript received April 15, 2011. This work was supported in part by

NIH grant UL1-RR024153 and an NSF Expeditions in Computing grant
(award ID 0926181).

N. Miskov-Zivanov and J. R. Faeder are with the Department of
Computational and Systems Biology, School of Medicine, University of
Pittsburgh, USA (phone: 412-648-9613; e-mail: nam66@pitt.edu,
faeder@pitt.edu).

A. Bresticker, D. Krishnaswamy, S. Venkatakrishnan, P. Kashinkunti
and D. Marculescu are with the Department of Electrical and Computer
Engineering, Carnegie Mellon University, USA (e-mail:
abrestic@ece.cmu.edu, deepakri@ece.cmu.edu, sreesanv@ece.cmu.edu,
pkashink@ece.cmu.edu, dianam@cmu.edu).

While these implementations do make SSA-based
simulations more efficient, applications that use ODE [5][6],
rule-based [7][8] and logical modeling [10][11][12]
approaches do not benefit.

In this work, we propose a design methodology (shown in
Fig. 1 and described in detail in Section II) for a
reconfigurable hardware, that is, Field Programmable Gate
Arrays (FPGAs). We present our methodology using an
example model for peripheral naïve T cell differentiation
into regulatory vs. helper T cells, that has been proved to
play a critical role in interactions between tumors and
immune system. We show that hardware-based emulation of
regulatory network models can greatly improve our
efficiency of simulating these models, and therefore,
produce rapid answers to inquiries about system response to
a number of stimuli, pathogens or drugs. The contributions
of this work, when compared to other proposed hardware
approaches to studying biological networks include:
• Hardware emulation of dynamic, logical models of

regulatory networks;
• FPGA design framework that allows for implementing

different logical models and different simulation
scenarios;

• Implementation of a top module that allows for concurrent
simulation of multiple implemented copies of the network;

• Several orders of magnitude speedup in network
simulation when compared to software-based approaches.

II. HARDWARE DESIGN METHODOLOGY
In this section, we describe the main steps of FPGA

design and the specificities of designing for emulation of
regulatory networks, using the peripheral naïve T cell

Regulatory Network Analysis Acceleration with Reconfigurable
Hardware

Natasa Miskov-Zivanov, Member, IEEE, Andrew Bresticker, Student Member, IEEE, Deepa Krishnaswamy,
SreesanVenkatakrishnan, Prashant Kashinkunti, Diana Marculescu, Senior Member, IEEE, and James R. Faeder

T

Fig. 1. Design flow: network model (logical, rule-based model), HDL
model implementation and actual FPGA implementation.

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 149

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

differentiation example.
The T cell model shown in Fig. 2 is adopted from [12],

where the model has been determined through extensive
literature survey and discussions with experts. In Fig. 2(a),
we present the cell signaling network model with key
elements and connections involved in differentiation. As it
can be seen from the network, this model includes signaling
from receptors (TCR, CD28, TGFβ, IL-2R), subsequent
activation of transcription factors (AP-1, NF-AT, NFκB,
STAT5, Smad3), gene expression (Foxp3, IL-2Rα, IL-2), as
well as the effect of transcribed genes on receptor signaling
(IL-2Rα, IL-2) and transcription (Foxp3). T cell
subpopulation (regulatory, Treg, vs. helper, Th) ratios have
been shown to play an important role in many immune and
autoimmune pathologies, but the determinants of
differentiation into these two phenotypes are not yet
understood. It is known that a marker for Treg cells is Foxp3
and a marker for Th cells is IL-2. It has been suggested in
[13] that most of the cells differentiate into Th phenotype for
high antigen dose, while a significant population of Treg
cells results from stimulation with low antigen dose. In Fig.
2(b), we also show the circuit model that we have developed
in [12] and which we implemented in hardware. However,
our hardware emulation methodology is general enough to
allow implementation of any logical modeling of biological
processes.

The steps of FPGA design are presented as follows. We
also describe how our approach can be generalized for
different models of regulatory networks.

A. Model definition
In order to design a circuit that can emulate a biological

network, one needs to consider several information sources
or 'inputs' to the design, as shown in Fig. 1. This includes
existing experimental data or knowledge about network
interactions. Next, it is also necessary to identify the type of
a model to be implemented. As described in Section I,

previous work focused on implementing the Gillespie's
simulation algorithm for the system of differential equations.
We present here the implementation of a dynamic, logical
model, but do not restrict our approach to logical models
only. We plan to create a general-purpose framework that
can translate rule-based and reaction-based models into
hardware implementation. These models are usually written
following existing software-simulation-tool templates and
can be simulated using these tools. Finally, once the model
is identified, one needs to define a set of inputs and outputs
of interest.

B. HDL framework
Once the model is defined, the next step is the

implementation of the model in a hardware description
language (HDL). In this work, we use Verilog HDL [14].
Any network model defined as a logical model can be
translated into an HDL description in a straightforward way.
We translated the T cell model manually, but in the future
we anticipate developing an automatic Logical Model →
Verilog translator.

The framework that we developed in Verilog consists of
several modules necessary to control the simulation of the
network. These modules define the simulation setup (e.g.,
number of rounds of simulation, deterministic vs. stochastic
simulation, etc.). In this work, we use an asynchronous
scheme for simulating the network following one used by
the BooleanNet tool [10]. Each simulation round consists of
applying the rules for the update of each element in a
random order. The order matters because once an element is
updated, the new value is used by subsequent update rules.

The HDL framework includes the top-level module,
which can be used to run several network copies in parallel.
Fig. 3 shows how modules are connected within the top
module (left), as well as part of the Verilog code for a single
module (right).

The Verilog description of the logical model relies on

 (a) (b)

Fig. 2. T-cell differentiation network adopted from [12]: (a) Molecular interaction map and (b) Gate-based logic implementing the network.

150

'assign' statements. This is the simplest way to implement
the network although statements such as 'if-else' and 'case'
also exist in Verilog and can be suitable for other model
implementations. If several copies of the model are
instantiated and downloaded on a single FPGA board
(modules 'M1'-'M6' in Fig. 3), the 'top' module can be used
to connect wires from input switches (through a
demultiplexer) to individual modules, as well as to connect
outputs from individual modules to the display (through a
multiplexer).

Inputs to the framework are modeled as input wires
connected to the 'top' and 'control' modules and include:
Initial state vector, which initializes all elements of the
network to a defined value; Element inhibitors and their time
of addition, which define if there are elements to be turned
off at some point during simulation; Time of stimulation
removal, which defines if the stimulation that allows for
activation of the network is removed during simulation;
Gene knock-out information, which defines whether there
are copies of the model in which some genes are
permanently turned off.

Outputs of the framework include signals representing
either several elements that need to be measured, or all
elements of the model. Tools for the simulation of designs
written in HDL exist, thereby also allowing for viewing
model outputs, that is, their behavior from the beginning to
the end of simulation. More details about using the tools and
all steps of specifying HDL design are provided in [15].

Finally, the written HDL implementation can be simulated
and tested using a higher-level module, 'Testbench' (as
shown in Fig. 1), which encloses the overall design.

C. FPGA implementation
When the model is implemented and tested, it can be

downloaded onto an FPGA board. An FPGA consists of:
'logic blocks', which can be configured to perform complex
combinational functions, or simple logic gates like AND and
XOR, a hierarchy of 'reconfigurable interconnects' that allow
the blocks to be “wired together” and 'I/O pads', that are
connected to switches, buttons and displays.

 In this work, buttons are used to start and stop the
simulation, while switches are used to select the activator or

inhibitor. As an initial way of displaying results, the state of
the network is displayed (in hexadecimal digits) on a bank of
seven-segment light-emitting diode (LED) displays.
Switches are used to select which network module results to
display, and which outputs of the chosen network to display.
An alternative method would be to use a block RAM
(Random Access Memory) to store the values and display
them on the monitor; we plan to explore this direction in the
future.

III. RESULTS
We compared the runtime and results that were obtained

from simulating our Verilog HDL framework (identical to
those obtained from the displays on the FPGA board) with
results obtained from software simulations in BooleanNet
tool, which is implemented in Python [10]. Not only does
the hardware emulation accurately reproduce the behavior of
all elements of the network, but it is also orders of
magnitude faster.

In case of our T cell differentiation example model, we
compute the speedup as follows. For each scenario, software
simulations were run 200 times, which has been shown to be
sufficient to estimate average values across the runs and
account for the stochasticity in biological processes. 20
update rounds are executed in each simulation run, where a
round includes a single update of each element in the model
(in our case, this is 54 update steps within the round). We
simulated the network for 20 rounds only, due to the fact
that the network reaches steady state within these 20 rounds
in all studied scenarios. Simulations are run on an FPGA that
has a speed of 1GHz (clock period of 1ns), with a single
update step taking approximately five clock cycles. This
leads to a single network module evaluation runtime on
FPGA of:

5 × 54 × 20 × 200 × 10-9 = 1ms
Since an identical simulation setup takes about 60s to run
using BooleanNet, a 60,000X speedup can be obtained using
our FPGA implementation. Furthermore, we were able to
implement six instances of the network on a Spartan 3
FPGA board simultaneously and to execute them in parallel
by implementing the top-level module as shown in Fig. 3.
This provides an approximate linear speedup increase of 6 ×
60,000 or more than five orders of magnitude over
BooleanNet.

In Fig. 4, we present the comparison of several software
simulation and hardware emulation results. In Fig. 4(a)-(b),
we present the Foxp3 and IL-2 results for two different
scenarios: stimulation with high and low antigen dose. As it
can be seen from those figures, the proposed method is
100% accurate when determining steady-state values. In Fig.
4(c)-(d) we use several additional scenarios for comparison.
Behavior of the system with addition of Akt and mTOR
inhibitors has been shown in Fig. 4(c), where lines represent
software simulation results and error lines show the
difference between those results and hardware emulation

Fig. 3. Implementation of a top-level control module: figure of the top level
module connecting network modules (left) and logical model
implementation in Verilog (right).

151

results. Finally, we also implemented the removal of stimuli
that occurs at different times during simulation. Fig. 4(d)
presents the comparison of steady-state values between
software and hardware in that case.

As it can be seen from Fig. 4, some discrepancies are
observed when comparing hardware emulation results with
software simulations. We do not believe that these
differences will have any effect on the timing results, which
is supported by their small magnitude, but we need to
understand their origin in order to have confidence that the
implementation is correct. The two main sources of possible
error are noise arising from the relatively small sample sizes
used in our comparisons (200) or a subtle difference in
execution semantics arising in our FPGA simulations. To
rule out the former, we simply need to run a larger number
of trajectories and see if the differences disappear. More
sophisticated statistical tests can also be applied [16]. If the
differences persist and assuming there are no errors in the
logic encoded with variable assignments, we will test for
differences in execution semantics for fixed (instead of
random) update orders.

IV. CONCLUSION
Modeling of biological regulatory networks is necessary

for tackling medical and biological challenges. Moreover,
being able to obtain fast answers to inquiries about system's
response to different stimuli is of critical importance. We
propose an FPGA design methodology that provides an
efficient framework for emulating dynamic models of
biological networks. Our results show that such a framework
can accurately reproduce all results obtained through
software simulation, but doing so orders of magnitude faster.
Our future work will focus on generalizing the design to
allow for emulation of different types of models and the
improvement of displaying results to users.

REFERENCES
[1] J. F. Keane, et al., "A compiled accelerator for biological cell

signaling simulations," in Proc. of ACM/SIGDA 12th International
Symposium on Field Programmable Gate Arrays (FPGA), 2004.

[2] L. Salwinski and D. Eisenberg, "In silico simulation of biological
network dynamics," in Nature Biotechnology, vol. 22, pp. 1017-1019,
2004.

[3] M. Yoshiini, et al., "FPGA Implementation of a Data-Driven
Stochastic Biochemical Simulator with the Next Reaction Method," in
Proc. of International Conference on Field Programmable Logic and
Applications (FPL), pp. 254-259, 2007.

[4] D. T. Gillespie, "Exact stochastic simulation of coupled chemical
reactions," in Journal of Physical Chemistry, vol. 81, pp. 2340-2361,
1977.

[5] J. J. Tyson, et al., "The dynamics of cell cycle regulation," in
Bioessays, vol. 24, pp. 1095-1109, 2002.

[6] M. Novak and J. J. Tyson, "A model for restriction point control of the
mammalian cell cycle," in Journal of Theoretical Biology, vol. 230,
pp. 563-579, 2004.

[7] M. L. Blinov, et al., "BioNetGen: software for rule-based modeling of
signal transduction based on the interactions of molecular domains,"
in Bioinformatics, vol. 20, pp. 3289-91, 2004.

[8] J. R. Faeder, et al., "Rule-based modeling of biochemical systems with
BioNetGen," in Methods Mol Biol, vol. 500, pp. 113-67, 2009.

[9] S. Bornholdt, "Boolean network models of cellular regulation:
prospects and limitations," in J R Soc Interface, vol. 5 Suppl 1, pp.
S85-94, 2008.

[10] I. Albert, et al., "Boolean network simulations for life scientists," in
Source Code Biol Med, vol. 3, p. 16, 2008.

[11] M. Chaves, et al., "Robustness and fragility of Boolean models for
genetic regulatory networks," in Journal of Theoretical Biology, vol.
235, pp. 431-49, 2005.

[12] N. Miskov-Zivanov et al., "Boolean Modeling and Analysis of
Peripheral T Cell Differentiation," under submission.

[13] M. S. Turner, et al., "Dominant role of antigen dose in CD4+Foxp3+
regulatory T cell induction and expansion," in Journal of Immunology,
vol. 183, pp. 4895-903, 2009.

[14] D. E. Thomas and P. R. Moorby, The Verilog hardware description
language, 5th ed. Norwell, Mass.: Kluwer Academic Publishers, 2002.

[15] N. Miskov-Zivanov, et al., "Emulation of Biological Networks in
Reconfigurable Hardware," in Proc. of ACM Conference on
Bioinformatics, Computational Biology and Biomedicine (ACM-BCB),
August 2011, to appear.

[16] L. A. Harris and P. Clancy, "A “partitioned leaping” approach for
multiscale modeling of chemical reaction dynamics," in Journal of
Chemical Physics ,vol. 125, p. 144107, October 2006.

 (a) (b)

 (c) (d)
Fig. 4. Comparison of results obtained through software simulation and hardware emulation of the T cell differentiation logical model for several scenarios
and initial conditions: Results for high and low antigen dose, simulation (left) and emulation (right) for Foxp3 (a) and IL-2 (b); (c) Foxp3 results (SW –
simulation, HW – emulation) for high antigen dose with addition of inhibitors, Akt (left) and mTOR (right); (d) Foxp3 and IL-2 steady state results from
simulation (left) and emulation (right) when antigen is removed at round 3,6 or 9 and without antigen removal.

152

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

