
 

 

 

  

Abstract—A multiple dataset model fitting approach for 

improving parameter reliability in action potential modeling is 

presented. A robust generic cardiac ionic model employing 

membrane currents based on two-gate Hodgkin-Huxley kinetics 

is described. Its generic nature allows it to accurately reproduce 

action potential waveforms in heterogeneous cardiac tissue by 

optimizing parameters governing ion channel kinetics and 

magnitudes. The model allows a user-defined number of voltage 

and time-dependent ion currents to be incorporated, in order to 

reproduce and predict multiple action potential waveforms 

recorded in intact cardiac myocyte. In total 12Nc+2 parameters 

were optimized using a curvilinear gradient method, where Nc is 

the user-specified number of time-dependent currents. Given 

appropriate experimental datasets, many of the known 

physiological membrane currents could be effectively 

reconstructed. Also, the optimized models were able to predict 

additional experimental action potential recordings that were 

not used in the optimization process. 

 

I. INTRODUCTION 

variety of cardiac action potentials (AP) and ionic 

currents from heterogeneous cardiac myocytes have 

been studied quantitatively using whole-cell current and 

voltage-clamp techniques. Such data provide essential 

information concerning the electric activity of cardiac tissue. 

At the same time, mathematical representations are required 

to provide a quantitatively deeper understanding of the 

underlying mechanisms of cardiac electric activity.  

    Ionic models are, in general, able to accurately reproduce 

physiological ionic mechanisms only under the experimental 

conditions they were based on, limiting the predictive utility 

of these models [1]. Also important is that parameter fits to 

AP waveforms may not be necessarily unique. That is, model 

parameters may not be well-determined even if the 

model-generated AP perfectly matches the experimental 

waveform. Many studies have demonstrated that significantly 

different sets of parameter values can reproduce nearly 

identical model AP outputs [2-6].  

    It is therefore desirable to develop computationally simple, 

robust parameter optimization approaches along with 

corresponding generic ionic models, which can accurately 

simulate or predict APs as well as other underlying 

physiological mechanisms in a variety of cardiac myocytes. 
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The model structure should be flexible and modular. By 

optimizing the appropriate model parameters, the model 

should be able to fit APs recorded from different myocytes 

under different experimental conditions. With desired 

experimental designs, such a model should be able to 

reproduce complex behavior such as the change in AP 

morphology due to ionic channel blockage by drugs, or paced 

high-frequency stimulation.   

In this study, a multiple dataset model fitting approach for 

improving parameter reliability is presented. The importance 

of parameter estimation using multiple sets of experimental 

recordings under variable pacing conditions is also discussed.  

 

II. METHODOLOGY 

A. Generic Model of Cell Electric Activity 

    The generic single cell model used in this study consists of 

Nc membrane currents and one leakage current iL, acting in 

parallel across a capacitive cell membrane (Fig. 1). The 

transmembrane potential
mE is given by  
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where 
ji denotes the j

th
 time-dependent ionic current, and Nc 

is the user-specified total number of time-dependent currents 

present. Details of the generic model, including equations for 

the gating variables, can be found in Guo et al. [7].  

B. Parameter Estimation with Multiple datasets  

Parameter optimization involved the systematic 

modification of parameter values of the generic model in 

order to minimize the disparity between the model-generated 
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Fig. 1.  Equivalent circuit representation of generic ionic model. The 

cell membrane is represented by a capacitance in parallel with several 

conductances denoting a variety of ionic currents.  
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APs and experimental data. Each experimental dataset used 

for optimization constituted a series of 3-4 consecutive APs. 

A custom curvilinear gradient-based optimization method [8, 

9] was performed on a standard desktop PC using Matlab 

(The Mathworks Inc., USA).  

In our parameter estimation algorithm, the major difference 

between single and multiple dataset optimization lay in the 

calculation of the Jacobian matrix J. Assume a single array of 

m×1 data points d is required to be fitted by an ODE system 

f(p), whose m outputs are a function of an n×1 parameter 

vector  p. The Jacobian matrix is then given by,  
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This Jacobian matrix is then used to iteratively define a 

curvilinear trajectory in parameter space, along which a 1D 

search is conducted for the minimum least squares objective 

[7]. The Jacobian given in (2) is used when fitting to a single 

recording. However, this form of the Jacobian is altered when 

optimizing a model to multiple AP data recorded from the 

same electrically-paced cell under multiple frequencies. In 

this case, it can be assumed that the density and kinetic 

properties of the ionic channels will not change in individual 

paced recordings. Hence all parameter values describing the 

ionic currents are shared across the N multiple datasets. In this 

case, the form of J will be: 
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where Nd is the number of data records, m is the number of 

data points per record (assumed here to be the same for each 

record), and n is the number of model parameters.  

   Compared with single dataset fitting, more computational 

resources are required for optimization using multiple data 

due to the larger size of the Jacobian matrix, as well as the fact 

that more local minima are likely to be involved in the 

objective parameter space. [10]. 

C. Experimental Methods 

Intracellular APs were recorded from intact LA myocytes 

in an in vitro rabbit LA preparation (refer to [11] for details of 

experimental methods). The sequence of PIs for the random 

stimulation protocol was generated in Matlab.  

 

III. RESULTS 

A. Uniformly-Paced Left Atrial Data 

A left atrial rabbit tissue preparation was paced using 

suprathreshold pulses at three different pacing intervals (PIs): 

400 ms, 300 ms and 200 ms, and APs were recorded at each 

PI. A series of steady state APs were selected for each pacing 

frequency.  

The generic model was optimized to simultaneously fit two 

series of left atrial AP waveforms (PI= 400 and 200 ms), 

which displayed significant variation in AP waveshape. 

Optimized parameters across these two datasets were 

specified to share the same values. A total of five 

time-dependent ion currents and one leakage current were 

required to simultaneously reproduce these two sets of 

experimental data. With decreasing PI, both the model 

generated AP characteristics and corresponding ionic currents 

(fig. 2) revealed beat-to-beat waveform variation. The RMS 

error between the optimized model and corresponding 

experimental data were 2.01 mV (PI= 400 ms), and 3.22 mV 

(PI= 200 ms). The optimized model was then used to predict 

the AP responds to a PI of 300 ms, which was not used in the 

optimization process.  According to the third panel in Fig. 2A, 

the additional experimental dataset can be accurately 

predicted (RMS error 2.46 mV) using the parameters 

obtained from the first two experimental datasets.  

B.   Randomly Paced Left Atrial Data 

A left atrial tissue preparation was both uniformly and 

randomly paced using suprathreshold stimuli, and APs were 

recorded for each pacing protocol. Random pacing was 

generated from a normal distribution of PIs, with mean and 

standard deviation of 275 and 69 ms respectively. A series of 

APs were selected for each dataset based on its 

electrophysiological characteristics. Besides the alternans 

 

 
Fig. 2. A: Multiple dataset fitting for left atrial action potentials. From 

top to bottom: APs with pacing interval (PI) of 400, 200 and 300 ms. 

The AP traces at PIs of 400 ms and 200 ms were simultaneously fitted, 

and the AP trace at a PI of 300 ms was predicted using Nc = 5  

time-dependent currents and one leakage current. B: Model-generated 

ionic and leakage currents at a PI of 200 ms.  
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evident at a PI of 200 ms, more significant beat-beat 

variations were demonstrated in the random-paced dataset. 

Compared with uniformly-paced data (PI = 200 ms), random 

paced AP or APD alternans were more obvious and less 

consistent. Fig. 3 illustrates multiple dataset fits to left atrial 

APs, in which experimental data from the same cell was 

generated by applying two uniform and one random pacing 

protocol. The RMS error between the optimized model and 

corresponding experimental data were 2.94 mV (PI = 400 

ms), 3.51 mV (PI  = 200 ms) and 3.91 mV (randomly paced).  

The generic model was used to simultaneously fit all three 

datasets. Optimized parameters across these multiple datasets 

shared the same value. A total of seven time-dependent ion 

currents and one leakage current were required to reproduce 

the multiset data. With decreasing PI, the model was able to 

generate AP characteristics and corresponding ionic currents 

consistent with accurate waveform fidelity, especially for 

randomly-paced results. From the results shown in Figs. 3 and 

4, at a high pacing frequency, a second AP is activated soon 

after the previous one. In this case, the corresponding APD is 

shorter due to the not fully-recovered model currents.  

 

IV. DISCUSSION AND CONCLUSION 

In this study, a series of experimentally-recorded APs were 

used to optimize generic ionic models of cardiac electrical 

 
Fig. 3.  Multiple simultaneous dataset fitting for uniformly and randomly paced left atrial action potentials. From top to bottom: APs with pacing 

interval (PI) of 400, 200 ms and randomly-paced. Each AP trace was fitted using Nc=7 time-dependent currents and one leakage current. 

 

 
Fig. 4.  Model-generated ionic and leakage currents of the left atrial AP fits shown in figure 3. 
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activity. Ionic mechanisms underlying APs in atrial myocytes 

can be reconstructed by using such a generic model, whose 

complexity lies somewhere between simple 

phenomenological models and biophysically-accurate 

models. A major improvement over existing modeling 

approaches is that model parameters have here been adjusted 

to accurately reproduce AP waveforms recorded under 

multiple experimental conditions, reconstructing AP 

characteristics in the heart operating over a range of 

conditions. Given more degrees of freedom, the generic 

model was able to simultaneously fit a large variety of 

complex AP records.  

Our experience from this study suggests that any additional 

data used for multiple dataset fitting must include additional 

information not present in the original dataset, or the 

predictability and usefulness of the model will decline. 

Numerically, introducing such additional data will introduce 

more local minima on the least square objective surface, 

confounding the search for a global optimum. Thus for 

multiple data optimization, it was much more 

time-consuming to fit the model to all datasets 

simultaneously, particularly if there were stringent 

constraints on each parameter, and these parameter values 

were shared between different datasets. Nonetheless, once the 

model had been optimized, the underlying currents were 

found to follow physiologically reasonable waveforms 

consistent with known behaviors of existing membrane 

currents. This indicates that the additional information 

provided by the multiple data can lead to accurate 

reconstructions of membrane currents. This was, in general, 

not easy to achieve with single datasets, even though the AP 

record itself could be well-fitted (results of single dataset fits 

are not shown here).  

With multiple datasets, the global minimum may be harder 

to locate due to the more complex objective surface with 

larger numbers of local minima introduced by the additional 

data. However, this multiple data provides a greater 

opportunity of successfully searching for ‘better’ local 

minima, since each local minimum will be now shallower 

compared to the global one. This is due to the additive effects 

of multiple data on the objective, akin to an ‘ensemble’ 

averaging procedure reducing the ‘noise’ of local minima 

whilst enhancing the global minimum signal, It should be 

noted that when fitting to a single dataset, we have found that 

there exist more than one combination of membrane current 

waveshapes that are able to reproduce the single AP 

waveform but these will generally fail to simultaneously 

reproduce multiple data.  

   Besides reproducing accurate AP waveshapes, our model 

can also reconstruct reliable ionic current waveforms, which 

are also important in simulating realistic cardiac dynamics. In 

addition, any number of user-defined ionic currents can be 

incorporated into the model structure, giving the model added 

flexibility to reproduce even more complex 

electrophysiological behaviors. The number of ionic currents 

included depends on matching between the model and 

corresponding data. Because of the uniform structure of each 

ionic current, many currents can be conveniently combined if 

they are found to follow similar behaviors during the 

optimization, making the process of model reduction easier. 

Although the generic model’s utility in higher dimensional 

simulation is still not clear, we believe that it could be a 

promising model for tissue or whole-heart simulations due to 

its simplified nature, and therefore, computational efficiency.   
Future refinements of this study should focus on 

experimental designs for more physiologically-meaningful 

multiple dataset optimization, continuously improving the 

model’s predictive ability and utility. Cardiac arrhythmia is a 

multi-cellular property of the whole heart, suggesting that 

higher dimensional simulations and optimizations will be 

more useful. Therefore, an effective approach of modeling 

electronic coupling currents between neighboring cells in 

whole-tissue simulation will be an important issue in our 

future work.   
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