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Abstract—Two types of boolean functions are considered,
the locus function of n variables, and the interval function
of ν = n − 1 variables. A 1-1 mapping is given that takes
elements (cells) of the interval function to antidual pairs of
elements in the locus function, and vice versa. A set of ν
binary codewords representing the intervals are defined and
used to generate the codewords of all genomic regions. Next
a diallelic three-point system is reviewed in the light of boolean
functions, which leads to redefining complete interference by a
logic function. Together with the upper bound of noninterference
already defined by a boolean function, it confines the region
of interference. Extensions of these two functions to any finite
number of ν are straightforward, but have been also made in
terms of variables taken from the inclusion-exclusion principle
(expressing “at least” and “exactly equal to” a decimal integer).
Two coefficients of coincidence for systems with more than three
loci are defined and discussed, one using the average of several
individual coefficients and the other taking as coefficient a real
number between zero and one. Finally, by way of a malfunction
of the mod-2 addition, it is shown that a four-point system may
produce two different functions, one of which exhibiting loss of
a class of odd recombinants.

I. INTRODUCTION

The well-known differential equation method introduced
by Haldane and improved on by Kosambi, Carter-Falconer,
Felsenstein and others, for modeling interference, suffers
from the stringent limitation that all calculations rest on
the three loci consideration, and that the resulting map
function in general cannot be extended to more loci
[Karlin and Liberman, (1994)]. An attempt to extend Hal-
dane’s approach to to more than three loci will be discussed.

A different approach exposed in a recent textbook
[Griffiths et al, (2005)] defines the coefficient of coincidence
as the ratio of observed and expected number (or frequency) of
the single class of double crossovers of a three-point system.
The same can be done for a four-point system, which has three
classes of double crossovers. The resulting three coefficients
of coincidence are then averaged.

Christiansen [Christiansen, (2000)] in his book on popula-
tion genetics consistently uses set theory to analyze diallelic
systems. This is the closest to employing boolean algebra,
since the power set of any finite set forms a boolean alge-
bra. [Mano, (1984)] is an easy readable reference to boolean
functions and their map representation.

II. BOOLEAN FUNCTIONS

Informally, a boolean function of n variables is a mapping
f : Bn → B, where n is a positive integer, B = {0, 1},
and the domain of f, Bn, is a set of 2n n-bit vectors, called
minterm functions or just minterms, and are denoted mi, where
the subscript i ∈ {0, 1, . . . , 2n−1} is the decimal equivalent of

mi interpreted as a binary number. The subset of n minterms,
having just one zero in the n-bit vector, is the set of atoms and
can generate the entire set Bn, using the operation ∨, called
disjunction or sum. Its dual relation ∧ is called conjunction
or product. Its symbol is usually omitted if no confusion can
arise. A third, unary operation ¯ (bar) called complementation
or negation changes a bit to its other value.

There are two notations used to describe boolean functions,
the bit notation (a bit is either a 1 or a 0), or the literal notation
(a literal is either a variable ai or āi). The arithmetic transform
of a boolean function uses the following identities: ā = 1−a,
a ∧ a = a, a ∨ b = a+ b− ab.

The weight of mi, denoted |mi|, is the number of 1s in the
bit sequence, and the distance of two minterms, mi and mj ,
is the number of positions in which the two minterms differ:
d(mi,mj) = |(i)2⊕ (j)2|, where (i)2 is the binary equivalent
of the decimal integer i. An odd [even] weighted minterm
is called odd [even] minterm. Two graphical representations
exist: the p-cube lattice, which represents minterms by points
and connects any two points which are unit distance apart by
a line, and the p-cube map, which represents the minterms by
cells. where neighboring cells are unit distance apart. The latter
one, also called Karnaugh map, is the workhorse in digital
design.

III. INTERVAL FUNCTIONS

Biology is not an exact science. It is based on probabil-
ity theory and uses statistical methods. Roughly speaking,
minterms are now considered cells indexed in bit notation but
containing probabilistic values (frequencies) of acquired (ob-
served) data. The variables in the literal notation are random
variables and and their cell denotation may be interpreted as
expected values of the cell contents.

The boolean variables ai of an n-variable boolean function
can be identified as genes of a diallelic system having n
loci, and therefore the function will be called locus function.
When considering probabilities, these are random variables
Pr(ai) = R(ai) with the properties (1)

∏n−1
i=0 R(ai) =

R(
∏n−1

i=0 ai) = R(mk) for some k determined by the literals
in the product, and (2) R(mi) = R(mj) for i+j = 2n−1; i.e.,
the pair (mi,mj) is antidual (one component is the bit-by-bit
complement of the other).

Recombination, however, occurs between loci and can be
detected only at the two loci marking the region. Therefore,
interval functions will be introduced having as atoms intervals
(an interval is the smallest region marked by neighboring loci,
Ai = [i, i− 1], i = 1, 2, . . . , ν = n − 1, and its probability is
Pr(Ai) = ri.
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The following identity is used to transform (compress) the
locus function of dimension n into the dimension of the
interval function

Ai = ai ⊕ ai−1

= aiāi−1 ∨ āiai−1 i = 1, 2, . . . , ν (1)

By mod2-addition (⊕) of the basic codewords representing
intervals it is possible to find the codewords of the entire
genomic region, whether as a single segment (one or several
connected intervals), or as a multiple segment region.

Let Mk be an interval minterm. To find the corresponding
locus minterms m, replace each Ai by expression (Eq.1) and
multiply out. For the case ν = 2, let k = 2. Then

M2 = A2Ā1 = (a2 ⊕ a1)(a1 ⊕ a0)

= (a2ā1 ∨ ā2a1)(a1a0 ∨ ā1ā0)

= a2ā1ā0 ∨ ā2a1a0 = (m4,m3)

Note that one interval minterm always maps into two allele
minterms.

Conversely, two allele minterms always map into one in-
terval minterm. To find the corresponding interval minterm
of mk, add (mod-2) the bit-notation (binary number) of mk

to its by one bit shifted version (it does not matter in which
direction the number is shifted). The right-most and left-most
bits, which do not have an addend, will be discarded. The
result is a ν-bit interval minterm, since each Ai satisfies Eq.1.
For the last example, m4, and m3,
a2 a1 a0 1 0 0 0 1 1

a2 a1 a0 1 0 0 0 1 1
A2 A1 1 0 1 0

An equivalent code in bit notation is the set of all even
weighted n-bit vectors, where the ones mark the end points
of the corresponding region. The interval codewords can
generate the entire code of 2ν − 1 codewords (not including
the empty region), by using the ⊕ operation. For n=3, these
codewords are A3 = (1100), A2 = (0110), A1 = (0011),
and the composite regions are A32 = A3 ⊕ A2 = (1010),
A31 = A3 ⊕ A1 = (1111), A21 = A2 ⊕ A1 = (0101),
A321 = A3 ⊕A2 ⊕A1 = (1001).

IV. THREE-POINT SYSTEM

The extreme values of interference for a three-point system
(ν = 2) are commonly stated as ro = r1 + r2 − 2r1r2 for no
interference NI, and rc = r1 + r2 for complete interference
CI (the superscripts o and c stand for odd and complete,
respectively). While the first value can be rewritten as a
Boolean function, ro = r1⊕r2, the second one can not. In the
2-cube map, ro occupies the two cells 1d = 01 and 2d = 10
(d stands for decimal). Including the only free cell 3d = 11
(the zero cell 0d = 00 is always excluded, since they contain
nonrecombinants), yields another logic function rc = r2 ∨ r1
and on the logic level this function together with the function
ro define the boundaries of intermediate interference functions.

As an example, taken from [Wu, Ma, and Casella (2007)],
consider a backcross a2a1a0/ā2ā1ā0× ā2ā1ā0× ā2ā1ā0. The

total of eight groups of genotypes produced are shown in the
locus 3-cube map and in compressed form in the interval 2-
cube map, using the technique outlined earlier. The gene order
is assumed to be 2, 1, 0 and the two intervals A2 = [2, 1],
A1 = [1, 0] and the composite of the two intervals, A21 =
[2, 0] have respective recombination frequencies r2, r1, and
r21.

a1
.31 .10 .11 .01

a2 .05 .02 .38 .02
a0

⇒

r1
.69 .12

r2 .69 .03
(2)

The entries of the allele 3-cube map are the ratios nij/N ,
where nij is the number of genotypes containing i recombi-
nants in A2 and j recombinants in A1, and N is the sample
size, here N = 100, after deleting the observations missing
in the two regions. The entries of the interval matrix are the
antidual pairs.

Note that the class (0,7) of nonrecombinants maps into
interval cell 0 and the recombinant classes into 01, 10, and 11;
this is the lower region of the three decimal numbers defining
the cells of the locus function. Another choice would be would
be to map class (0,7) into 7 and the recombinant classes into
decimal 6, 5, 4. Erasing the leftmost bit of the corresponding
binary numbers will put the cells in reverse order. Although
inconsequential, this mapping would be closer to Mather’s
formula, which states that recombination fractions r lie in the
range 0 ≤ r ≤ 0.5. As a consequence of dealing with antidual
classes, the functions and polynomials related to the interval
map are all symmetric.

The recombination frequencies are related to the ‘minterms’
gij via the matrix equation r = Mg and g = M−1r, where

rt = 1 r1 r2 r21)

gt = g00 g01 g10 g11

M =

1 1 1 1
1 1

1 1
1 1

M−1 =

2 −1 −1 −1
1 −1 1

−1 1 1
1 1 −1

The square matrix M is not orthogonal, but can be made
so by replacing the recombination frequencies rk by λk =
1 + 2rk, where k = 2, 1, 21, and then can be written as a
Kronecker product of a 2× 2 matrix (see [Schnell,(1961)]).

V. EXTENSIONS

The extension of the two logic function and their comple-
ments to ν loci yields:

roν = r1 ⊕ r2 ⊕ · · · ⊕ rν =
ν⊕

i=1

ri (3)

r̄oν = 1⊕ r1 ⊕ · · · ⊕ rν =

ν⊕
i=0

ri, r0 = 1 (4)

rcν = r1 ∨ r2 ∨ · · · ∨ rν =

ν∨
i=1

ri (5)
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r̄cν =
ν∨

i=0

ri =
ν∧

i=1

r̄i (6)

The corresponding arithmetic polynomials can be written as

roν = Sν,1 − 2Sν,2 + 4Sν,3 −+ · · ·+ (−2)ν−1Sν,ν

=
ν∑

i=1

(−2)k−1Sν,k (7)

r̄oν =
ν∏
(1− 2ri) (8)

rcν = Sν,1 − Sν,2 + Sν,3 −+ · · ·+ (−1)ν−1Sν,ν

=
ν∑

k=1

(−2)k−1Sν,k (9)

r̄c =
ν∏

i=1

(1− ri) (10)

where
Sν,k =

∑
1≤i1<i2<···<ik≤ν

ri1ri2 · · · rik (11)

that is, the summation in Eq.11 is extended over all k combi-
nations {i1, i2, . . . , ik} of the ν indices.

In genetic parlance the general inclusion-exclusion principle
[Charalambides, (2005)] states: the probabilities qν,k and pν,k
that crossover occurs in at least k and in exactly k intervals,
respectively, are given by

qν,k =
ν∑

i=k

(−1)i−k

(
i− 1

k − 1

)
Sν, i 1 ≤ k ≤ ν (12)

pν,k =
ν∑

i=k

(−1)i−k

(
i

k

)
Sν,i 0 ≤ k ≤ ν (13)

where Sν.0 = 1 and Sν, i is given by Eq.11.
Comparing the polynomial rcν (Eq.9) with qν,1 (Eq.13 for

k = 1) shows that the two polynomials are identical: rcν =
qν,1. Hence crossover must occur in at least one interval when
there is complete interference. Similarly, the complement of
the noninterference function roν can be defined as

r̄oν = 1⊕ r1 ⊕ · · · ⊕ rν =

ν⊕
i=0

ri, r0 = 1 (14)

r̄oν =
ν∏

i=1

(1− 2ri) (15)

and the functions of complete interference as

r̄cν = r̄1 ∧ r̄2 ∧ . . . ∧ r̄ν =

ν∧
i=1

r̄i (16)

r̄cν =

c∏
i=1

(1− ri) =

ν∑
i=1

(−1)iSν,i Sν,0 = 1 (17)

The relation between the probabilities qν,k and pν,k is given

by

qν,k =
ν∑

i=k

pν,i (18)

1− qν,k =
k−1∑
i=0

pν,i, 1 ≤ k ≤ ν (19)

and the relation between Eq.18 and Eq.19 can be shown via
the identity

∑ν
i=0 pi = 1.

The functions NI and CI can now be rewritten as

roν =

⌊ν/2⌋∑
i=1

pν,2i−1 (20)

rcν = qν,1 (21)

These connections to the area of the Inclusion Exclusion
Principle, may be useful in narrowing the interference bounds
(e.g., by Bonferroni type inequalities).

A. Interference Measure

This subject will be general and short because of the
author’s limited knowledge of the intricacies of data collection
and classification. No special examples will be provided.

Two interference measures will be considered, both under
the assumption that the number of odd recombinant classes
will not change under interference or will change only in-
crementally. Then only even recombinant classes need to be
considered. The first interference measure considered is based
on the calculation of the coefficient of coincidence C by
[Griffiths et al, (2005)] for the single class of double recom-
binants in a 3-point system. The four-point system has three
classes of double recombinants, located in cells 3, 5, 6, or in
literal notation, respectively, in r̄3r2r1, r3r̄2r1 and r2r1r̄1. The
idea is to individually find C for each even recombinant class
and then to take their average. The recombination fractions ri,
and the observed frequency of double recombination classes
can be calculated from the data and the expected frequency
of each class is the literal notation, just stated. There are two
dissatisfactory points to this definition, the use of averaging
and the exponential explosion of even recombinant classes.

Another definition of interference index is an extension
of Haldane’s formula. The function Eq.8 contains only even
minterms and the function Eq.10 is the literal notation of
the zero cell. Hence the difference of the two functions is
a function of all non-zero even cells, that is, the difference is
a CI function and the NI function would be zero:

Icν =
ν∏

i=1

(1− 2ri)−
ν∏

i=1

(1− ri) (22)

Ioν =
ν∏

i=1

(1− ri)−
ν∏

i=1

(1− ri) = 0 (23)

Replacing 2 by a real number γ, where 2 ≥ γ ≥ 1, would
produce an infinity of interference functions. Usually, the
range of this variable is between 1 and 0. This range shift
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can be accomplished by adding 1 to γ. Thus let δ = γ + 1.
Then

Iν =
ν∏

i=1

(1− δri)−
ν∏

i=1

(1− ri) (24)

Incidentally, the variable δ also appears in the Haldane differ-
ential equation for a three-point system, when the assumption
rc = r1+r2 is replaced by rc = r1+r2−r1r2. The function Iν
depends on both the number of intervals ν, and the real number
δ, but extracting the latter number from the polynomial will
be very difficult if not impossible.

B. Malfunction as a Model

Finally, a model based on ideas taken from fault detection
of logic circuits is offered to show violation of the assumption
that the number of all odd recombinants remain the same. The
two operations ⊕ and ∨ used in the definition of ro and rc,
respectively, differ from each other in just one combination:
1 ⊕ 1 = 0 but 1 ∨ 1 = 1. Assume now that the ⊕ opera-
tor malfunctions and gets “stuck-at 1”; i.e., the ⊕-operation
changes to ∨-operation. If all ⊕-operators malfunction over
time in this way, then complete interference occurs.

For ν = 3, the nonzero even recombinants, which are all
double recombinants, can occupy three cells of the 3-cube
interval map. The NI function is ro3 = r3 ⊕ r2 ⊕ r1. If the
left operator gets stuck-at-1, then the function changes to r3∨
r2 ⊕ r1. These two operations are not distributive. If first the
⊕ operation is performed, then

r3 ∨ (r2 ⊕ r1) = ∨(1, 2, 4, 7, 5, 6)

where the decimal numbers refer to the cells (minterms) of the
new function. the four cells 1,2,4,7, defining the NI function
are all present and of the remaining three cells, 5 and 6 are
occupied by two double recombinant groups. None of the
two functions express complete interference, since both have
unoccupied even cells.

The other possibility is that first the ∨ operation is per-
formed. Then

(r3 ∨ r2)⊕ r1 = ∨(1, 2, 4, 6)

The three-weighted odd recombinants in cell 7 have shifted to
cell 6 and the assumption is violated that no odd class disap-
pears. This may perhaps also a cause for negative interference.
But this event is rare, due to the higher priority (strength) of
the ⊕ operation over the ∨ operation.

VI. CONCLUSION

A boolean function can be considered a special probability
function having the extreme probability values zero and one.
By replacing these values by ranges, 0 ≤ r ≤ 0, 5 and 1 ≥ r̄ =
1 − r ≥ 0.5, respectively, these logic functions may become
quite a useful tool in the analysis of biological phenomena.
The aim of this report was to draw attention to this fact by
applying ideas from other disciplines.

Another aim of writing this report was to show that com-
plete interference can also be presented by a logic function

as noninterference can be. For the three-point system the
complete interference formula is not rc = r1 + r2, but
rc = r1 + r2 − r1r2.

Intervals are also used in quantitative trait loci (QTL)
mappings and some of the results presented here may find
there too useful applications.
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